DiffSTOCK:利用扩散模型进行概率关系股市预测

Divyanshu Daiya, Monika Yadav, Harshit Singh Rao
{"title":"DiffSTOCK:利用扩散模型进行概率关系股市预测","authors":"Divyanshu Daiya, Monika Yadav, Harshit Singh Rao","doi":"arxiv-2403.14063","DOIUrl":null,"url":null,"abstract":"In this work, we propose an approach to generalize denoising diffusion\nprobabilistic models for stock market predictions and portfolio management.\nPresent works have demonstrated the efficacy of modeling interstock relations\nfor market time-series forecasting and utilized Graph-based learning models for\nvalue prediction and portfolio management. Though convincing, these\ndeterministic approaches still fall short of handling uncertainties i.e., due\nto the low signal-to-noise ratio of the financial data, it is quite challenging\nto learn effective deterministic models. Since the probabilistic methods have\nshown to effectively emulate higher uncertainties for time-series predictions.\nTo this end, we showcase effective utilisation of Denoising Diffusion\nProbabilistic Models (DDPM), to develop an architecture for providing better\nmarket predictions conditioned on the historical financial indicators and\ninter-stock relations. Additionally, we also provide a novel deterministic\narchitecture MaTCHS which uses Masked Relational Transformer(MRT) to exploit\ninter-stock relations along with historical stock features. We demonstrate that\nour model achieves SOTA performance for movement predication and Portfolio\nmanagement.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DiffSTOCK: Probabilistic relational Stock Market Predictions using Diffusion Models\",\"authors\":\"Divyanshu Daiya, Monika Yadav, Harshit Singh Rao\",\"doi\":\"arxiv-2403.14063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose an approach to generalize denoising diffusion\\nprobabilistic models for stock market predictions and portfolio management.\\nPresent works have demonstrated the efficacy of modeling interstock relations\\nfor market time-series forecasting and utilized Graph-based learning models for\\nvalue prediction and portfolio management. Though convincing, these\\ndeterministic approaches still fall short of handling uncertainties i.e., due\\nto the low signal-to-noise ratio of the financial data, it is quite challenging\\nto learn effective deterministic models. Since the probabilistic methods have\\nshown to effectively emulate higher uncertainties for time-series predictions.\\nTo this end, we showcase effective utilisation of Denoising Diffusion\\nProbabilistic Models (DDPM), to develop an architecture for providing better\\nmarket predictions conditioned on the historical financial indicators and\\ninter-stock relations. Additionally, we also provide a novel deterministic\\narchitecture MaTCHS which uses Masked Relational Transformer(MRT) to exploit\\ninter-stock relations along with historical stock features. We demonstrate that\\nour model achieves SOTA performance for movement predication and Portfolio\\nmanagement.\",\"PeriodicalId\":501045,\"journal\":{\"name\":\"arXiv - QuantFin - Portfolio Management\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Portfolio Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.14063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.14063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了一种将去噪扩散概率模型推广用于股市预测和投资组合管理的方法。目前的工作已经证明了为市场时间序列预测建立股票间关系模型的有效性,并将基于图的学习模型用于价值预测和投资组合管理。这些确定性方法虽然令人信服,但在处理不确定性方面仍有不足,即由于金融数据的信噪比较低,学习有效的确定性模型具有相当大的挑战性。为此,我们展示了对去噪扩散概率模型(DDPM)的有效利用,以开发一种架构,根据历史金融指标和股票间关系提供更好的市场预测。此外,我们还提供了一种新颖的确定性架构 MaTCHS,该架构使用屏蔽关系转换器(MRT)来利用股票间关系和历史股票特征。我们证明,我们的模型在走势预测和投资组合管理方面实现了 SOTA 性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DiffSTOCK: Probabilistic relational Stock Market Predictions using Diffusion Models
In this work, we propose an approach to generalize denoising diffusion probabilistic models for stock market predictions and portfolio management. Present works have demonstrated the efficacy of modeling interstock relations for market time-series forecasting and utilized Graph-based learning models for value prediction and portfolio management. Though convincing, these deterministic approaches still fall short of handling uncertainties i.e., due to the low signal-to-noise ratio of the financial data, it is quite challenging to learn effective deterministic models. Since the probabilistic methods have shown to effectively emulate higher uncertainties for time-series predictions. To this end, we showcase effective utilisation of Denoising Diffusion Probabilistic Models (DDPM), to develop an architecture for providing better market predictions conditioned on the historical financial indicators and inter-stock relations. Additionally, we also provide a novel deterministic architecture MaTCHS which uses Masked Relational Transformer(MRT) to exploit inter-stock relations along with historical stock features. We demonstrate that our model achieves SOTA performance for movement predication and Portfolio management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信