Ana P. O. Muller, Bernardo Fraga, Matheus Klatt, Jessé C. Costa, Clecio R. Bom, Elisangela L. Faria, Marcelo P. de Albuquerque, Marcio P. de Albuquerque
{"title":"深盐:利用深度学习从不确定性迁移的地下偏移采集中完成三维盐分分割","authors":"Ana P. O. Muller, Bernardo Fraga, Matheus Klatt, Jessé C. Costa, Clecio R. Bom, Elisangela L. Faria, Marcelo P. de Albuquerque, Marcio P. de Albuquerque","doi":"10.1111/1365-2478.13506","DOIUrl":null,"url":null,"abstract":"<p>Delimiting salt inclusions from migrated images during the velocity model building flow is a time-consuming activity that depends on highly human-curated analysis and is subject to interpretation errors or limitations of the images and methods available. We propose a supervised deep learning based method to include three-dimensional salt geometries in the velocity models. We compare two convolutional networks – based on the U-Net architecture – which can process three-dimensional seismic data. One architecture uses three-dimensional convolutional kernels, and the other has convolutional long short-term memory units. Each architecture requires specific preprocessing steps which affects their training and predictive performance. Both proposed architectures use subsurface offset gathers obtained from reverse time migration with an extended imaging condition as input and are trained to predict the salt inclusions. The velocity model used in migration is a reasonable approximation of sediment velocity but without salt inclusions. Thus, the migration model and, consequently, the migrated images are inaccurate due to the absence of the salt inclusion in the model using just the sediment velocity information for the segmentation. A similar salt inclusion methodology was previously validated for two-dimensional approaches; we extend it to the three-dimensional case. Our approach relies on subsurface common image gathers to focus the sediments' reflections around the zero offset and spread salt reflections' energy over large subsurface offsets. The results show that both proposed network models can accurately delineate the salt bodies in the test models, but when evaluating the trained networks for the three-dimensional SEG/EAGE salt model, the architecture with convolutional long short-term memory units has proven to generalize better.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"72 6","pages":"2186-2199"},"PeriodicalIF":1.8000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep-salt: Complete three-dimensional salt segmentation from inaccurate migrated subsurface offset gathers using deep learning\",\"authors\":\"Ana P. O. Muller, Bernardo Fraga, Matheus Klatt, Jessé C. Costa, Clecio R. Bom, Elisangela L. Faria, Marcelo P. de Albuquerque, Marcio P. de Albuquerque\",\"doi\":\"10.1111/1365-2478.13506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Delimiting salt inclusions from migrated images during the velocity model building flow is a time-consuming activity that depends on highly human-curated analysis and is subject to interpretation errors or limitations of the images and methods available. We propose a supervised deep learning based method to include three-dimensional salt geometries in the velocity models. We compare two convolutional networks – based on the U-Net architecture – which can process three-dimensional seismic data. One architecture uses three-dimensional convolutional kernels, and the other has convolutional long short-term memory units. Each architecture requires specific preprocessing steps which affects their training and predictive performance. Both proposed architectures use subsurface offset gathers obtained from reverse time migration with an extended imaging condition as input and are trained to predict the salt inclusions. The velocity model used in migration is a reasonable approximation of sediment velocity but without salt inclusions. Thus, the migration model and, consequently, the migrated images are inaccurate due to the absence of the salt inclusion in the model using just the sediment velocity information for the segmentation. A similar salt inclusion methodology was previously validated for two-dimensional approaches; we extend it to the three-dimensional case. Our approach relies on subsurface common image gathers to focus the sediments' reflections around the zero offset and spread salt reflections' energy over large subsurface offsets. The results show that both proposed network models can accurately delineate the salt bodies in the test models, but when evaluating the trained networks for the three-dimensional SEG/EAGE salt model, the architecture with convolutional long short-term memory units has proven to generalize better.</p>\",\"PeriodicalId\":12793,\"journal\":{\"name\":\"Geophysical Prospecting\",\"volume\":\"72 6\",\"pages\":\"2186-2199\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Prospecting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13506\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13506","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Deep-salt: Complete three-dimensional salt segmentation from inaccurate migrated subsurface offset gathers using deep learning
Delimiting salt inclusions from migrated images during the velocity model building flow is a time-consuming activity that depends on highly human-curated analysis and is subject to interpretation errors or limitations of the images and methods available. We propose a supervised deep learning based method to include three-dimensional salt geometries in the velocity models. We compare two convolutional networks – based on the U-Net architecture – which can process three-dimensional seismic data. One architecture uses three-dimensional convolutional kernels, and the other has convolutional long short-term memory units. Each architecture requires specific preprocessing steps which affects their training and predictive performance. Both proposed architectures use subsurface offset gathers obtained from reverse time migration with an extended imaging condition as input and are trained to predict the salt inclusions. The velocity model used in migration is a reasonable approximation of sediment velocity but without salt inclusions. Thus, the migration model and, consequently, the migrated images are inaccurate due to the absence of the salt inclusion in the model using just the sediment velocity information for the segmentation. A similar salt inclusion methodology was previously validated for two-dimensional approaches; we extend it to the three-dimensional case. Our approach relies on subsurface common image gathers to focus the sediments' reflections around the zero offset and spread salt reflections' energy over large subsurface offsets. The results show that both proposed network models can accurately delineate the salt bodies in the test models, but when evaluating the trained networks for the three-dimensional SEG/EAGE salt model, the architecture with convolutional long short-term memory units has proven to generalize better.
期刊介绍:
Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.