二阶轨迹公式

Pub Date : 2024-03-22 DOI:10.1002/mana.202200295
Arup Chattopadhyay, Soma Das, Chandan Pradhan
{"title":"二阶轨迹公式","authors":"Arup Chattopadhyay,&nbsp;Soma Das,&nbsp;Chandan Pradhan","doi":"10.1002/mana.202200295","DOIUrl":null,"url":null,"abstract":"<p>Koplienko [Sib. Mat. Zh. 25 (1984), 62–71; English transl. in Siberian Math. J. 25 (1984), 735–743] found a trace formula for perturbations of self-adjoint operators by operators of Hilbert–Schmidt class <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>B</mi>\n <mn>2</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>H</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {B}_2(\\mathcal {H})$</annotation>\n </semantics></math>. Later, Neidhardt introduced a similar formula in the case of pairs of unitaries <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>U</mi>\n <mo>,</mo>\n <msub>\n <mi>U</mi>\n <mn>0</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(U,U_0)$</annotation>\n </semantics></math> via multiplicative path in [Math. Nachr. 138 (1988), 7–25]. In 2012, Potapov and Sukochev [Comm. Math. Phys. 309 (2012), no. 3, 693–702] obtained a trace formula like the Koplienko trace formula for pairs of contractions by answering an open question posed by Gesztesy, Pushnitski, and Simon [Zh. Mat. Fiz. Anal. Geom. 4 (2008), no. 1, 63–107, 202; Open Question 11.2]. In this paper, we supply a new proof of the Koplienko trace formula in the case of pairs of contractions <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>T</mi>\n <mo>,</mo>\n <msub>\n <mi>T</mi>\n <mn>0</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(T,T_0)$</annotation>\n </semantics></math>, where the initial operator <span></span><math>\n <semantics>\n <msub>\n <mi>T</mi>\n <mn>0</mn>\n </msub>\n <annotation>$T_0$</annotation>\n </semantics></math> is normal, via linear path by reducing the problem to a finite-dimensional one as in the proof of Krein's trace formula by Voiculescu [Oper. Theory Adv. Appl. 24 (1987) 329–332] and Sinha and Mohapatra [Proc. Indian Acad. Sci. Math. Sci. 104 (1994), no. 4, 819–853] and [Integral Equations Operator Theory 24 (1996), no. 3, 285–297]. Consequently, we obtain the Koplienko trace formula for a class of pairs of contractions using the Schäffer matrix unitary dilation. Moreover, we also obtain the Koplienko trace formula for a pair of self-adjoint operators and maximal dissipative operators using the Cayley transform. At the end, we extend the Koplienko–Neidhardt trace formula for a class of pairs of contractions <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>T</mi>\n <mo>,</mo>\n <msub>\n <mi>T</mi>\n <mn>0</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(T,T_0)$</annotation>\n </semantics></math> via multiplicative path using the finite-dimensional approximation method.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Second-order trace formulas\",\"authors\":\"Arup Chattopadhyay,&nbsp;Soma Das,&nbsp;Chandan Pradhan\",\"doi\":\"10.1002/mana.202200295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Koplienko [Sib. Mat. Zh. 25 (1984), 62–71; English transl. in Siberian Math. J. 25 (1984), 735–743] found a trace formula for perturbations of self-adjoint operators by operators of Hilbert–Schmidt class <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>B</mi>\\n <mn>2</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>H</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathcal {B}_2(\\\\mathcal {H})$</annotation>\\n </semantics></math>. Later, Neidhardt introduced a similar formula in the case of pairs of unitaries <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>U</mi>\\n <mo>,</mo>\\n <msub>\\n <mi>U</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(U,U_0)$</annotation>\\n </semantics></math> via multiplicative path in [Math. Nachr. 138 (1988), 7–25]. In 2012, Potapov and Sukochev [Comm. Math. Phys. 309 (2012), no. 3, 693–702] obtained a trace formula like the Koplienko trace formula for pairs of contractions by answering an open question posed by Gesztesy, Pushnitski, and Simon [Zh. Mat. Fiz. Anal. Geom. 4 (2008), no. 1, 63–107, 202; Open Question 11.2]. In this paper, we supply a new proof of the Koplienko trace formula in the case of pairs of contractions <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>T</mi>\\n <mo>,</mo>\\n <msub>\\n <mi>T</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(T,T_0)$</annotation>\\n </semantics></math>, where the initial operator <span></span><math>\\n <semantics>\\n <msub>\\n <mi>T</mi>\\n <mn>0</mn>\\n </msub>\\n <annotation>$T_0$</annotation>\\n </semantics></math> is normal, via linear path by reducing the problem to a finite-dimensional one as in the proof of Krein's trace formula by Voiculescu [Oper. Theory Adv. Appl. 24 (1987) 329–332] and Sinha and Mohapatra [Proc. Indian Acad. Sci. Math. Sci. 104 (1994), no. 4, 819–853] and [Integral Equations Operator Theory 24 (1996), no. 3, 285–297]. Consequently, we obtain the Koplienko trace formula for a class of pairs of contractions using the Schäffer matrix unitary dilation. Moreover, we also obtain the Koplienko trace formula for a pair of self-adjoint operators and maximal dissipative operators using the Cayley transform. At the end, we extend the Koplienko–Neidhardt trace formula for a class of pairs of contractions <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>T</mi>\\n <mo>,</mo>\\n <msub>\\n <mi>T</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(T,T_0)$</annotation>\\n </semantics></math> via multiplicative path using the finite-dimensional approximation method.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202200295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202200295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

科普连科 [Sib.Mat.25 (1984), 62-71; English transl.25 (1984), 62-71; English transl. in Siberian Math.25 (1984), 735-743] 发现了希尔伯特-施密特类算子对自相关算子扰动的迹公式。后来,奈德哈特在[数学通报 138 (1988),7-25]中通过乘法路径引入了一对单元的类似公式。2012 年,波塔波夫和苏科切夫[Comm. Math. Phys. 309 (2012),no. 3, 693-702]通过回答格兹特西、普什尼茨基和西蒙[Zh. Mat. Fiz. Anal. Geom. 4 (2008),no. 1, 63-107, 202; Open Question 11.2]提出的一个开放问题,得到了类似科普连科迹式的成对收缩迹式。在本文中,我们通过线性路径,将问题简化为有限维问题,提供了科普连科迹线公式在成对收缩情况下的新证明,其中初始算子是正常的,正如沃伊库勒斯库对克雷恩迹线公式的证明[Oper.24 (1987) 329-332] 以及 Sinha 和 Mohapatra [Proc. Indian Acad. Sci.因此,我们利用 Schäffer 矩阵单元扩张,得到了一类成对收缩的科普连科迹线公式。此外,我们还利用 Cayley 变换得到了一对自相关算子和最大耗散算子的科普连科迹线公式。最后,我们利用有限维近似法,通过乘法路径扩展了一类成对收缩的科普连科-奈德哈特迹公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Second-order trace formulas

Koplienko [Sib. Mat. Zh. 25 (1984), 62–71; English transl. in Siberian Math. J. 25 (1984), 735–743] found a trace formula for perturbations of self-adjoint operators by operators of Hilbert–Schmidt class B 2 ( H ) $\mathcal {B}_2(\mathcal {H})$ . Later, Neidhardt introduced a similar formula in the case of pairs of unitaries ( U , U 0 ) $(U,U_0)$ via multiplicative path in [Math. Nachr. 138 (1988), 7–25]. In 2012, Potapov and Sukochev [Comm. Math. Phys. 309 (2012), no. 3, 693–702] obtained a trace formula like the Koplienko trace formula for pairs of contractions by answering an open question posed by Gesztesy, Pushnitski, and Simon [Zh. Mat. Fiz. Anal. Geom. 4 (2008), no. 1, 63–107, 202; Open Question 11.2]. In this paper, we supply a new proof of the Koplienko trace formula in the case of pairs of contractions ( T , T 0 ) $(T,T_0)$ , where the initial operator T 0 $T_0$ is normal, via linear path by reducing the problem to a finite-dimensional one as in the proof of Krein's trace formula by Voiculescu [Oper. Theory Adv. Appl. 24 (1987) 329–332] and Sinha and Mohapatra [Proc. Indian Acad. Sci. Math. Sci. 104 (1994), no. 4, 819–853] and [Integral Equations Operator Theory 24 (1996), no. 3, 285–297]. Consequently, we obtain the Koplienko trace formula for a class of pairs of contractions using the Schäffer matrix unitary dilation. Moreover, we also obtain the Koplienko trace formula for a pair of self-adjoint operators and maximal dissipative operators using the Cayley transform. At the end, we extend the Koplienko–Neidhardt trace formula for a class of pairs of contractions ( T , T 0 ) $(T,T_0)$ via multiplicative path using the finite-dimensional approximation method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信