Ryan Paulik, Alec Wild, Conrad Zorn, Liam Wotherspoon, Shaun Williams
{"title":"新西兰西港 2021 年 7 月洪灾住宅建筑损毁评估","authors":"Ryan Paulik, Alec Wild, Conrad Zorn, Liam Wotherspoon, Shaun Williams","doi":"10.1186/s40562-024-00323-z","DOIUrl":null,"url":null,"abstract":"Reliable flood damage models are informed by detailed damage assessments. Damage models are critical in flood risk assessments, representing an elements vulnerability to damage. This study evaluated residential building damage for the July 2021 flood in Westport, New Zealand. We report on flood hazard, exposure and damage features observed for 247 residential buildings. Damage samples were applied to evaluate univariable and multivariable model performance using different variable sample sizes and regression-based supervised learning algorithms. Feature analysis for damage prediction showed high importance of water depth variables and low importance for commonly observed building variables such as structural frame and storeys. Overfitting occurred for most models evaluated when more than 150 samples were used. This resulted from limited damage heterogeneity observed, and variables of low importance affecting model learning. The Random Forest algorithm, which considered multiple important variables (water depth above floor level, area and floor height) improved predictive precision by 17% relative to other models when over 150 damage samples were considered. Our findings suggest the evaluated model performance could be improved by incorporating heterogeneous damage samples from similar flood contexts, in turn increasing capacity for reliable spatial transfer.","PeriodicalId":48596,"journal":{"name":"Geoscience Letters","volume":"29 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of residential building damage for the July 2021 flood in Westport, New Zealand\",\"authors\":\"Ryan Paulik, Alec Wild, Conrad Zorn, Liam Wotherspoon, Shaun Williams\",\"doi\":\"10.1186/s40562-024-00323-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliable flood damage models are informed by detailed damage assessments. Damage models are critical in flood risk assessments, representing an elements vulnerability to damage. This study evaluated residential building damage for the July 2021 flood in Westport, New Zealand. We report on flood hazard, exposure and damage features observed for 247 residential buildings. Damage samples were applied to evaluate univariable and multivariable model performance using different variable sample sizes and regression-based supervised learning algorithms. Feature analysis for damage prediction showed high importance of water depth variables and low importance for commonly observed building variables such as structural frame and storeys. Overfitting occurred for most models evaluated when more than 150 samples were used. This resulted from limited damage heterogeneity observed, and variables of low importance affecting model learning. The Random Forest algorithm, which considered multiple important variables (water depth above floor level, area and floor height) improved predictive precision by 17% relative to other models when over 150 damage samples were considered. Our findings suggest the evaluated model performance could be improved by incorporating heterogeneous damage samples from similar flood contexts, in turn increasing capacity for reliable spatial transfer.\",\"PeriodicalId\":48596,\"journal\":{\"name\":\"Geoscience Letters\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoscience Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1186/s40562-024-00323-z\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1186/s40562-024-00323-z","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Evaluation of residential building damage for the July 2021 flood in Westport, New Zealand
Reliable flood damage models are informed by detailed damage assessments. Damage models are critical in flood risk assessments, representing an elements vulnerability to damage. This study evaluated residential building damage for the July 2021 flood in Westport, New Zealand. We report on flood hazard, exposure and damage features observed for 247 residential buildings. Damage samples were applied to evaluate univariable and multivariable model performance using different variable sample sizes and regression-based supervised learning algorithms. Feature analysis for damage prediction showed high importance of water depth variables and low importance for commonly observed building variables such as structural frame and storeys. Overfitting occurred for most models evaluated when more than 150 samples were used. This resulted from limited damage heterogeneity observed, and variables of low importance affecting model learning. The Random Forest algorithm, which considered multiple important variables (water depth above floor level, area and floor height) improved predictive precision by 17% relative to other models when over 150 damage samples were considered. Our findings suggest the evaluated model performance could be improved by incorporating heterogeneous damage samples from similar flood contexts, in turn increasing capacity for reliable spatial transfer.
Geoscience LettersEarth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
4.90
自引率
2.50%
发文量
42
审稿时长
25 weeks
期刊介绍:
Geoscience Letters is the official journal of the Asia Oceania Geosciences Society, and a fully open access journal published under the SpringerOpen brand. The journal publishes original, innovative and timely research letter articles and concise reviews on studies of the Earth and its environment, the planetary and space sciences. Contributions reflect the eight scientific sections of the AOGS: Atmospheric Sciences, Biogeosciences, Hydrological Sciences, Interdisciplinary Geosciences, Ocean Sciences, Planetary Sciences, Solar and Terrestrial Sciences, and Solid Earth Sciences. Geoscience Letters focuses on cutting-edge fundamental and applied research in the broad field of the geosciences, including the applications of geoscience research to societal problems. This journal is Open Access, providing rapid electronic publication of high-quality, peer-reviewed scientific contributions.