{"title":"控制电极催化剂层中的离子聚合物含量以提高甲醇-水电解槽的制氢性能","authors":"Dong-Hoon Kang, Sungmin Kang, Seog-Young Yoon, Dong-Hyun Peck","doi":"10.1007/s40684-024-00618-8","DOIUrl":null,"url":null,"abstract":"<p>Methanol–water electrolysis technology, which electrochemically produces hydrogen using methanol instead of water, has received significant attention given that the substantial amount of power required by conventional water electrolysis can be drastically reduced when using it. This study investigates the electrochemical performance and microstructural characteristics of methanol–water electrolyzers according to the ionomer-to-carbon (I/C) ratio range of 0.5–2.0 in electrode catalyst layers. The lowest voltage at the same current density is observed at an I/C ratio of 1.5 at the anode. When the I/C ratio was 2.0, the voltage was observed to be approximately 25% higher than that at an I/C ratio of 1.5. A microstructural analysis shows a decrease of the specific surface area due to catalyst agglomeration at I/C ratios higher than 1.5. The results of the BET analysis showed a decrease in the surface area with an increase in the I/C ratio. Furthermore, when the I/C ratio exceeds 1.5, separated layers of excessive amounts of ionomer are observed, possibly blocking the electron conduction pathways in the electrode catalyst layer. The energy conversion efficiency of the developed methanol–water electrolyzer was assessed in an current density range of 0.08–0.80 A cm<sup>−2</sup>, demonstrating values between 81.4% and 92.4%.</p>","PeriodicalId":14238,"journal":{"name":"International Journal of Precision Engineering and Manufacturing-Green Technology","volume":"25 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control of the Ionomer Contents in the Electrode Catalyst Layer for Enhanced Performance of Methanol–Water Electrolyzers for Hydrogen Production\",\"authors\":\"Dong-Hoon Kang, Sungmin Kang, Seog-Young Yoon, Dong-Hyun Peck\",\"doi\":\"10.1007/s40684-024-00618-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Methanol–water electrolysis technology, which electrochemically produces hydrogen using methanol instead of water, has received significant attention given that the substantial amount of power required by conventional water electrolysis can be drastically reduced when using it. This study investigates the electrochemical performance and microstructural characteristics of methanol–water electrolyzers according to the ionomer-to-carbon (I/C) ratio range of 0.5–2.0 in electrode catalyst layers. The lowest voltage at the same current density is observed at an I/C ratio of 1.5 at the anode. When the I/C ratio was 2.0, the voltage was observed to be approximately 25% higher than that at an I/C ratio of 1.5. A microstructural analysis shows a decrease of the specific surface area due to catalyst agglomeration at I/C ratios higher than 1.5. The results of the BET analysis showed a decrease in the surface area with an increase in the I/C ratio. Furthermore, when the I/C ratio exceeds 1.5, separated layers of excessive amounts of ionomer are observed, possibly blocking the electron conduction pathways in the electrode catalyst layer. The energy conversion efficiency of the developed methanol–water electrolyzer was assessed in an current density range of 0.08–0.80 A cm<sup>−2</sup>, demonstrating values between 81.4% and 92.4%.</p>\",\"PeriodicalId\":14238,\"journal\":{\"name\":\"International Journal of Precision Engineering and Manufacturing-Green Technology\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Precision Engineering and Manufacturing-Green Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40684-024-00618-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Precision Engineering and Manufacturing-Green Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40684-024-00618-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Control of the Ionomer Contents in the Electrode Catalyst Layer for Enhanced Performance of Methanol–Water Electrolyzers for Hydrogen Production
Methanol–water electrolysis technology, which electrochemically produces hydrogen using methanol instead of water, has received significant attention given that the substantial amount of power required by conventional water electrolysis can be drastically reduced when using it. This study investigates the electrochemical performance and microstructural characteristics of methanol–water electrolyzers according to the ionomer-to-carbon (I/C) ratio range of 0.5–2.0 in electrode catalyst layers. The lowest voltage at the same current density is observed at an I/C ratio of 1.5 at the anode. When the I/C ratio was 2.0, the voltage was observed to be approximately 25% higher than that at an I/C ratio of 1.5. A microstructural analysis shows a decrease of the specific surface area due to catalyst agglomeration at I/C ratios higher than 1.5. The results of the BET analysis showed a decrease in the surface area with an increase in the I/C ratio. Furthermore, when the I/C ratio exceeds 1.5, separated layers of excessive amounts of ionomer are observed, possibly blocking the electron conduction pathways in the electrode catalyst layer. The energy conversion efficiency of the developed methanol–water electrolyzer was assessed in an current density range of 0.08–0.80 A cm−2, demonstrating values between 81.4% and 92.4%.
期刊介绍:
Green Technology aspects of precision engineering and manufacturing are becoming ever more important in current and future technologies. New knowledge in this field will aid in the advancement of various technologies that are needed to gain industrial competitiveness. To this end IJPEM - Green Technology aims to disseminate relevant developments and applied research works of high quality to the international community through efficient and rapid publication. IJPEM - Green Technology covers novel research contributions in all aspects of "Green" precision engineering and manufacturing.