Joao H. A. Ferreira, Ana Maria A. B. Medeiros, Renato M. Peres, Thiago C. Canevari
{"title":"利用电化学阻抗光谱法,用 AgNP/碳点/MWCNT 纳米结构修饰的印金电极超灵敏测定橙汁中的杀螟硫磷杀虫剂","authors":"Joao H. A. Ferreira, Ana Maria A. B. Medeiros, Renato M. Peres, Thiago C. Canevari","doi":"10.1007/s12161-024-02614-9","DOIUrl":null,"url":null,"abstract":"<div><p>This work describes the synthesis, characterization, and electrochemical application of innovative AgNP/carbon dot/MWCNT nanoarchitecture. Silver nanoparticles (AgNPs) have been obtained by directly reducing silver nitrate salt in carbon dot/MWCNT alcoholic solution. UV–vis spectroscopy, HR-TEM, XPS, and electrochemical techniques have characterized this nanoarchitecture. The AgNP/carbon dot/MWCNT nanoarchitecture has been dispersed on a gold-printed electrode surface, showing excellent electrocatalytic activity for fenitrothion determination in acetate buffer, pH 4.5, by impedance electrochemistry spectroscopy with a detection limit of 0.48 nmol L<sup>−1</sup>. The fenitrothion pesticide detection was also performed in orange juice and did not suffer significant interference from other pesticides.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":561,"journal":{"name":"Food Analytical Methods","volume":"17 6","pages":"825 - 833"},"PeriodicalIF":2.6000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-Sensitive Determination of Fenitrothion Pesticide in Orange Juice by Gold-Printed Electrode Modified with AgNP/Carbon Dot/MWCNT Nanoarchitecture Employing Electrochemical Impedance Spectroscopy\",\"authors\":\"Joao H. A. Ferreira, Ana Maria A. B. Medeiros, Renato M. Peres, Thiago C. Canevari\",\"doi\":\"10.1007/s12161-024-02614-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work describes the synthesis, characterization, and electrochemical application of innovative AgNP/carbon dot/MWCNT nanoarchitecture. Silver nanoparticles (AgNPs) have been obtained by directly reducing silver nitrate salt in carbon dot/MWCNT alcoholic solution. UV–vis spectroscopy, HR-TEM, XPS, and electrochemical techniques have characterized this nanoarchitecture. The AgNP/carbon dot/MWCNT nanoarchitecture has been dispersed on a gold-printed electrode surface, showing excellent electrocatalytic activity for fenitrothion determination in acetate buffer, pH 4.5, by impedance electrochemistry spectroscopy with a detection limit of 0.48 nmol L<sup>−1</sup>. The fenitrothion pesticide detection was also performed in orange juice and did not suffer significant interference from other pesticides.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":561,\"journal\":{\"name\":\"Food Analytical Methods\",\"volume\":\"17 6\",\"pages\":\"825 - 833\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Analytical Methods\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12161-024-02614-9\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Analytical Methods","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12161-024-02614-9","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Ultra-Sensitive Determination of Fenitrothion Pesticide in Orange Juice by Gold-Printed Electrode Modified with AgNP/Carbon Dot/MWCNT Nanoarchitecture Employing Electrochemical Impedance Spectroscopy
This work describes the synthesis, characterization, and electrochemical application of innovative AgNP/carbon dot/MWCNT nanoarchitecture. Silver nanoparticles (AgNPs) have been obtained by directly reducing silver nitrate salt in carbon dot/MWCNT alcoholic solution. UV–vis spectroscopy, HR-TEM, XPS, and electrochemical techniques have characterized this nanoarchitecture. The AgNP/carbon dot/MWCNT nanoarchitecture has been dispersed on a gold-printed electrode surface, showing excellent electrocatalytic activity for fenitrothion determination in acetate buffer, pH 4.5, by impedance electrochemistry spectroscopy with a detection limit of 0.48 nmol L−1. The fenitrothion pesticide detection was also performed in orange juice and did not suffer significant interference from other pesticides.
期刊介绍:
Food Analytical Methods publishes original articles, review articles, and notes on novel and/or state-of-the-art analytical methods or issues to be solved, as well as significant improvements or interesting applications to existing methods. These include analytical technology and methodology for food microbial contaminants, food chemistry and toxicology, food quality, food authenticity and food traceability. The journal covers fundamental and specific aspects of the development, optimization, and practical implementation in routine laboratories, and validation of food analytical methods for the monitoring of food safety and quality.