预测绿色快速消费品行业消费者集群成员的预测模型方法

Andreas Niedermeier, Christian Mergel, Agnes Emberger-Klein, Klaus Menrad
{"title":"预测绿色快速消费品行业消费者集群成员的预测模型方法","authors":"Andreas Niedermeier,&nbsp;Christian Mergel,&nbsp;Agnes Emberger-Klein,&nbsp;Klaus Menrad","doi":"10.1016/j.bioeco.2024.100064","DOIUrl":null,"url":null,"abstract":"<div><p>Predictive models are increasingly crucial in navigating heterogeneous markets. This study develops a predictive model approach to forecast consumer cluster membership in the green fast-moving consumer goods sector, focusing on bio-based products like adhesives and plasters. Through two online surveys in Germany, we identified key factors acting as drivers and barriers, demonstrating their effectiveness in distinguishing similar consumer segments across both product categories. Utilizing multinomial logistic regression, we crafted a prediction model that accurately forecasts cluster membership, providing novel insights into consumer behavior towards non-food bio-based products. This facilitates the development of targeted business and marketing strategies, optimizing resource allocation in market research activities. Our findings offer significant contributions to understanding the dynamics influencing consumer choices in the bio-based product market.</p></div>","PeriodicalId":100394,"journal":{"name":"EFB Bioeconomy Journal","volume":"4 ","pages":"Article 100064"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667041024000028/pdfft?md5=926b271b7d710a8564dd138693cd1036&pid=1-s2.0-S2667041024000028-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A predictive model approach to forecast consumers’ cluster membership in the green fast moving consumer goods sector\",\"authors\":\"Andreas Niedermeier,&nbsp;Christian Mergel,&nbsp;Agnes Emberger-Klein,&nbsp;Klaus Menrad\",\"doi\":\"10.1016/j.bioeco.2024.100064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Predictive models are increasingly crucial in navigating heterogeneous markets. This study develops a predictive model approach to forecast consumer cluster membership in the green fast-moving consumer goods sector, focusing on bio-based products like adhesives and plasters. Through two online surveys in Germany, we identified key factors acting as drivers and barriers, demonstrating their effectiveness in distinguishing similar consumer segments across both product categories. Utilizing multinomial logistic regression, we crafted a prediction model that accurately forecasts cluster membership, providing novel insights into consumer behavior towards non-food bio-based products. This facilitates the development of targeted business and marketing strategies, optimizing resource allocation in market research activities. Our findings offer significant contributions to understanding the dynamics influencing consumer choices in the bio-based product market.</p></div>\",\"PeriodicalId\":100394,\"journal\":{\"name\":\"EFB Bioeconomy Journal\",\"volume\":\"4 \",\"pages\":\"Article 100064\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667041024000028/pdfft?md5=926b271b7d710a8564dd138693cd1036&pid=1-s2.0-S2667041024000028-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EFB Bioeconomy Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667041024000028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EFB Bioeconomy Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667041024000028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

预测模型对于驾驭异质市场越来越重要。本研究开发了一种预测模型方法,用于预测绿色快速消费品行业的消费者集群成员,重点关注粘合剂和膏药等生物基产品。通过在德国进行的两次在线调查,我们确定了作为驱动因素和障碍因素的关键因素,证明了这些因素在区分这两个产品类别的类似消费者群体方面的有效性。利用多项式逻辑回归,我们建立了一个预测模型,该模型能够准确预测群组成员,为了解消费者对非食品生物基产品的行为提供了新的视角。这有助于制定有针对性的商业和营销战略,优化市场研究活动中的资源分配。我们的研究结果为了解影响生物基产品市场消费者选择的动态因素做出了重要贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A predictive model approach to forecast consumers’ cluster membership in the green fast moving consumer goods sector

Predictive models are increasingly crucial in navigating heterogeneous markets. This study develops a predictive model approach to forecast consumer cluster membership in the green fast-moving consumer goods sector, focusing on bio-based products like adhesives and plasters. Through two online surveys in Germany, we identified key factors acting as drivers and barriers, demonstrating their effectiveness in distinguishing similar consumer segments across both product categories. Utilizing multinomial logistic regression, we crafted a prediction model that accurately forecasts cluster membership, providing novel insights into consumer behavior towards non-food bio-based products. This facilitates the development of targeted business and marketing strategies, optimizing resource allocation in market research activities. Our findings offer significant contributions to understanding the dynamics influencing consumer choices in the bio-based product market.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信