ASAP:针对拥挤的多维固态 NMR 图谱的自动顺序分配程序

IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS
Bo Chen
{"title":"ASAP:针对拥挤的多维固态 NMR 图谱的自动顺序分配程序","authors":"Bo Chen","doi":"10.1016/j.jmr.2024.107664","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate signal assignments can be challenging for congested solid-state NMR (ssNMR) spectra. We describe an automatic sequential assignment program (ASAP) to partially overcome this challenge. ASAP takes three input files: the residue type assignments (RTAs) determined from the better-resolved NCACX spectrum, the full peak list of the NCOCX spectrum, and the protein sequence. It integrates our auto-residue type assignment strategy (ARTIST) with the Monte Carlo simulated annealing (MCSA) algorithm to overcome the hurdle for accurate signal assignments caused by incomplete side-chain resonances and spectral congestion. Combined, ASAP demonstrates robust performance and accelerates signal assignments of large proteins (&gt;200 residues) that lack crystalline order.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"361 ","pages":"Article 107664"},"PeriodicalIF":2.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ASAP: An automatic sequential assignment program for congested multidimensional solid state NMR spectra\",\"authors\":\"Bo Chen\",\"doi\":\"10.1016/j.jmr.2024.107664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate signal assignments can be challenging for congested solid-state NMR (ssNMR) spectra. We describe an automatic sequential assignment program (ASAP) to partially overcome this challenge. ASAP takes three input files: the residue type assignments (RTAs) determined from the better-resolved NCACX spectrum, the full peak list of the NCOCX spectrum, and the protein sequence. It integrates our auto-residue type assignment strategy (ARTIST) with the Monte Carlo simulated annealing (MCSA) algorithm to overcome the hurdle for accurate signal assignments caused by incomplete side-chain resonances and spectral congestion. Combined, ASAP demonstrates robust performance and accelerates signal assignments of large proteins (&gt;200 residues) that lack crystalline order.</p></div>\",\"PeriodicalId\":16267,\"journal\":{\"name\":\"Journal of magnetic resonance\",\"volume\":\"361 \",\"pages\":\"Article 107664\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S109078072400048X\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S109078072400048X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

对于拥挤的固态核磁共振(ssNMR)光谱来说,精确的信号分配是一项挑战。我们介绍了一种自动顺序赋值程序 (ASAP),以部分克服这一挑战。ASAP 需要三个输入文件:根据分辨率较高的 NCACX 光谱确定的残基类型赋值 (RTA)、NCOCX 光谱的完整峰值列表以及蛋白质序列。它将我们的自动残基类型分配策略(ARTIST)与蒙特卡洛模拟退火(MCSA)算法相结合,克服了侧链共振不全和光谱拥塞造成的精确信号分配障碍。结合使用后,ASAP 表现出强大的性能,并加快了缺乏结晶秩序的大型蛋白质(200 个残基)的信号分配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

ASAP: An automatic sequential assignment program for congested multidimensional solid state NMR spectra

ASAP: An automatic sequential assignment program for congested multidimensional solid state NMR spectra

Accurate signal assignments can be challenging for congested solid-state NMR (ssNMR) spectra. We describe an automatic sequential assignment program (ASAP) to partially overcome this challenge. ASAP takes three input files: the residue type assignments (RTAs) determined from the better-resolved NCACX spectrum, the full peak list of the NCOCX spectrum, and the protein sequence. It integrates our auto-residue type assignment strategy (ARTIST) with the Monte Carlo simulated annealing (MCSA) algorithm to overcome the hurdle for accurate signal assignments caused by incomplete side-chain resonances and spectral congestion. Combined, ASAP demonstrates robust performance and accelerates signal assignments of large proteins (>200 residues) that lack crystalline order.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
13.60%
发文量
150
审稿时长
69 days
期刊介绍: The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信