建立蚊子传播疾病的混合代理模型。

S M Mniszewski, C A Manore, C Bryan, S Y Del Valle, D Roberts
{"title":"建立蚊子传播疾病的混合代理模型。","authors":"S M Mniszewski, C A Manore, C Bryan, S Y Del Valle, D Roberts","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Agent-based models (ABM) are used to simulate the spread of infectious disease through a population. Detailed human movement, demography, realistic business location networks, and in-host disease progression are available in existing ABMs, such as the Epidemic Simulation System (EpiSimS). These capabilities make possible the exploration of pharmaceutical and non-pharmaceutical mitigation strategies used to inform the public health community. There is a similar need for the spread of mosquito borne pathogens due to the re-emergence of diseases such as chikungunya and dengue fever. A network-patch model for mosquito dynamics has been coupled with EpiSimS. Mosquitoes are represented as a \"patch\" or \"cloud\" associated with a location. Each patch has an ordinary differential equation (ODE) mosquito dynamics model and mosquito related parameters relevant to the location characteristics. Activities at each location can have different levels of potential exposure to mosquitoes based on whether they are inside, outside, or somewhere in-between. As a proof of concept, the hybrid network-patch model is used to simulate the spread of chikungunya through Washington, DC. Results are shown for a base case, followed by varying the probability of transmission, mosquito count, and activity exposure. We use visualization to understand the pattern of disease spread.</p>","PeriodicalId":91410,"journal":{"name":"Summer Computer Simulation Conference : (SCSC 2014) : 2014 Summer Simulation Multi-Conference : Monterey, California, USA, 6-10 July 2014. Summer Computer Simulation Conference (2014 : Monterey, Calif.)","volume":"2014 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4662560/pdf/","citationCount":"0","resultStr":"{\"title\":\"Towards a Hybrid Agent-based Model for Mosquito Borne Disease.\",\"authors\":\"S M Mniszewski, C A Manore, C Bryan, S Y Del Valle, D Roberts\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Agent-based models (ABM) are used to simulate the spread of infectious disease through a population. Detailed human movement, demography, realistic business location networks, and in-host disease progression are available in existing ABMs, such as the Epidemic Simulation System (EpiSimS). These capabilities make possible the exploration of pharmaceutical and non-pharmaceutical mitigation strategies used to inform the public health community. There is a similar need for the spread of mosquito borne pathogens due to the re-emergence of diseases such as chikungunya and dengue fever. A network-patch model for mosquito dynamics has been coupled with EpiSimS. Mosquitoes are represented as a \\\"patch\\\" or \\\"cloud\\\" associated with a location. Each patch has an ordinary differential equation (ODE) mosquito dynamics model and mosquito related parameters relevant to the location characteristics. Activities at each location can have different levels of potential exposure to mosquitoes based on whether they are inside, outside, or somewhere in-between. As a proof of concept, the hybrid network-patch model is used to simulate the spread of chikungunya through Washington, DC. Results are shown for a base case, followed by varying the probability of transmission, mosquito count, and activity exposure. We use visualization to understand the pattern of disease spread.</p>\",\"PeriodicalId\":91410,\"journal\":{\"name\":\"Summer Computer Simulation Conference : (SCSC 2014) : 2014 Summer Simulation Multi-Conference : Monterey, California, USA, 6-10 July 2014. Summer Computer Simulation Conference (2014 : Monterey, Calif.)\",\"volume\":\"2014 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4662560/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Summer Computer Simulation Conference : (SCSC 2014) : 2014 Summer Simulation Multi-Conference : Monterey, California, USA, 6-10 July 2014. Summer Computer Simulation Conference (2014 : Monterey, Calif.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Summer Computer Simulation Conference : (SCSC 2014) : 2014 Summer Simulation Multi-Conference : Monterey, California, USA, 6-10 July 2014. Summer Computer Simulation Conference (2014 : Monterey, Calif.)","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于代理的模型(ABM)用于模拟传染病在人群中的传播。现有的 ABM(如流行病模拟系统(EpiSimS))可提供详细的人类移动、人口统计、现实的商业地点网络和宿主内疾病进展情况。有了这些功能,就可以探索药物和非药物缓解策略,为公共卫生界提供信息。由于基孔肯雅病和登革热等疾病的再次出现,对蚊媒病原体的传播也有类似的需求。蚊子动态网络-斑块模型已与 EpiSimS 相结合。蚊子被表示为与某个地点相关的 "斑块 "或 "云"。每个斑块都有一个常微分方程(ODE)蚊子动力学模型和与地点特征相关的蚊子相关参数。根据在室内、室外或介于两者之间,每个地点的活动都可能与蚊子有不同程度的接触。作为概念验证,混合网络-补丁模型用于模拟基孔肯雅病毒在华盛顿特区的传播。结果显示的是基本情况,然后是传播概率、蚊子数量和活动接触情况的变化。我们利用可视化来了解疾病的传播模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards a Hybrid Agent-based Model for Mosquito Borne Disease.

Agent-based models (ABM) are used to simulate the spread of infectious disease through a population. Detailed human movement, demography, realistic business location networks, and in-host disease progression are available in existing ABMs, such as the Epidemic Simulation System (EpiSimS). These capabilities make possible the exploration of pharmaceutical and non-pharmaceutical mitigation strategies used to inform the public health community. There is a similar need for the spread of mosquito borne pathogens due to the re-emergence of diseases such as chikungunya and dengue fever. A network-patch model for mosquito dynamics has been coupled with EpiSimS. Mosquitoes are represented as a "patch" or "cloud" associated with a location. Each patch has an ordinary differential equation (ODE) mosquito dynamics model and mosquito related parameters relevant to the location characteristics. Activities at each location can have different levels of potential exposure to mosquitoes based on whether they are inside, outside, or somewhere in-between. As a proof of concept, the hybrid network-patch model is used to simulate the spread of chikungunya through Washington, DC. Results are shown for a base case, followed by varying the probability of transmission, mosquito count, and activity exposure. We use visualization to understand the pattern of disease spread.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信