Mustafa Emre, Yasin Karamazi, Toygar Emre, Çağrı Avci, Cagatay Aydin, Sonia Ebrahimi, Ayper Boga Pekmezekmek
{"title":"6GHz 射频电磁辐射对大鼠痛觉的影响","authors":"Mustafa Emre, Yasin Karamazi, Toygar Emre, Çağrı Avci, Cagatay Aydin, Sonia Ebrahimi, Ayper Boga Pekmezekmek","doi":"10.1080/15368378.2024.2331134","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents data on pain perception in rats exposed to 6 GHz radiofrequency electromagnetic radiation (RF-EMR). Rats were divided into two groups: control (<i>n</i> = 10, 4 replicates per test) and RF-EMR exposed group (<i>n</i> = 10, 4 replicates per test). Nociceptive responses of the groups were measured using rodent analgesiometry. Rats were divided into control and RF-EMR exposed groups. Nociceptive responses were measured using rodent analgesiometry. RF-EMR exposed rats had a 15% delay in responding to hot plate thermal stimulation compared to unexposed rats. The delay in responding to radiant heat thermal stimulation was 21%. We determined that RF-EMR promoted the occurrence of pressure pain as statistical significance by + 42% (<i>p</i> < 0.001). We observed that RF-EMR exposure increased nociceptive pain by + 35% by promoting cold plate stimulation (<i>p</i> < 0.05). RF-EMR exposure did not affect thermal preference as statistical significance but did support the formation of pressure pain perception.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"117-124"},"PeriodicalIF":1.6000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of 6GHz radiofrequency electromagnetic radiation on rat pain perception.\",\"authors\":\"Mustafa Emre, Yasin Karamazi, Toygar Emre, Çağrı Avci, Cagatay Aydin, Sonia Ebrahimi, Ayper Boga Pekmezekmek\",\"doi\":\"10.1080/15368378.2024.2331134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents data on pain perception in rats exposed to 6 GHz radiofrequency electromagnetic radiation (RF-EMR). Rats were divided into two groups: control (<i>n</i> = 10, 4 replicates per test) and RF-EMR exposed group (<i>n</i> = 10, 4 replicates per test). Nociceptive responses of the groups were measured using rodent analgesiometry. Rats were divided into control and RF-EMR exposed groups. Nociceptive responses were measured using rodent analgesiometry. RF-EMR exposed rats had a 15% delay in responding to hot plate thermal stimulation compared to unexposed rats. The delay in responding to radiant heat thermal stimulation was 21%. We determined that RF-EMR promoted the occurrence of pressure pain as statistical significance by + 42% (<i>p</i> < 0.001). We observed that RF-EMR exposure increased nociceptive pain by + 35% by promoting cold plate stimulation (<i>p</i> < 0.05). RF-EMR exposure did not affect thermal preference as statistical significance but did support the formation of pressure pain perception.</p>\",\"PeriodicalId\":50544,\"journal\":{\"name\":\"Electromagnetic Biology and Medicine\",\"volume\":\" \",\"pages\":\"117-124\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electromagnetic Biology and Medicine\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15368378.2024.2331134\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetic Biology and Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2024.2331134","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
The effect of 6GHz radiofrequency electromagnetic radiation on rat pain perception.
This paper presents data on pain perception in rats exposed to 6 GHz radiofrequency electromagnetic radiation (RF-EMR). Rats were divided into two groups: control (n = 10, 4 replicates per test) and RF-EMR exposed group (n = 10, 4 replicates per test). Nociceptive responses of the groups were measured using rodent analgesiometry. Rats were divided into control and RF-EMR exposed groups. Nociceptive responses were measured using rodent analgesiometry. RF-EMR exposed rats had a 15% delay in responding to hot plate thermal stimulation compared to unexposed rats. The delay in responding to radiant heat thermal stimulation was 21%. We determined that RF-EMR promoted the occurrence of pressure pain as statistical significance by + 42% (p < 0.001). We observed that RF-EMR exposure increased nociceptive pain by + 35% by promoting cold plate stimulation (p < 0.05). RF-EMR exposure did not affect thermal preference as statistical significance but did support the formation of pressure pain perception.
期刊介绍:
Aims & Scope: Electromagnetic Biology and Medicine, publishes peer-reviewed research articles on the biological effects and medical applications of non-ionizing electromagnetic fields (from extremely-low frequency to radiofrequency). Topic examples include in vitro and in vivo studies, epidemiological investigation, mechanism and mode of interaction between non-ionizing electromagnetic fields and biological systems. In addition to publishing original articles, the journal also publishes meeting summaries and reports, and reviews on selected topics.