{"title":"在实验室规模的生物反应器中,利用元基因组分选技术研究氧介导的抗生素耐药性迁移和共存。","authors":"Sakina Bombaywala, Abhay Bajaj, Nishant A Dafale","doi":"10.1007/s11274-024-03952-w","DOIUrl":null,"url":null,"abstract":"<p><p>Sub-lethal levels of antibiotic stimulate bacteria to generate reactive oxygen species (ROS) that promotes emergence and spread of antibiotic resistance mediated by mobile genetic elements (MGEs). Nevertheless, the influence of dissolved oxygen (DO) levels on mobility of antibiotic resistance genes (ARGs) in response to ROS-induced stress remains elusive. Thus, the study employs metagenomic assembly and binning approaches to decipher mobility potential and co-occurrence frequency of ARGs and MGEs under hyperoxic (5.5-7 mgL<sup>- 1</sup>), normoxic (2.5-4 mgL<sup>- 1</sup>), and hypoxic (0.5-1 mgL<sup>- 1</sup>) conditions in lab-scale bioreactor for 6 months. Among 163 high-quality metagenome-assembled genomes (MAGs) recovered from 13 metagenomes, 42 MAGs harboured multiple ARGs and were assigned to priority pathogen group. Total ARG count increased by 4.3 and 2.5% in hyperoxic and normoxic, but decreased by 0.53% in hypoxic conditions after 150 days. On contrary, MGE count increased by 7.3-1.3% in all the DO levels, with only two ARGs showed positive correlation with MGEs in hypoxic compared to 20 ARGs under hyperoxic conditions. Opportunistic pathogens (Escherichia, Klebsiella, Clostridium, and Proteus) were detected as potential hosts of ARGs wherein co-localisation of critical ARG gene cassette (sul1, dfr1,adeF, and qacC) were identified in class 1 integron/Tn1 family transposons. Thus, enhanced co-occurrence frequency of ARGs with MGEs in pathogens suggested promotion of ARGs mobility under oxidative stress. The study offers valuable insights into ARG dissemination and hosts dynamics that is essential for controlling oxygen-related stress for mitigating MGEs and ARGs in the environment.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 5","pages":"142"},"PeriodicalIF":4.2000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxygen mediated mobilization and co-occurrence of antibiotic resistance in lab-scale bioreactor using metagenomic binning.\",\"authors\":\"Sakina Bombaywala, Abhay Bajaj, Nishant A Dafale\",\"doi\":\"10.1007/s11274-024-03952-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sub-lethal levels of antibiotic stimulate bacteria to generate reactive oxygen species (ROS) that promotes emergence and spread of antibiotic resistance mediated by mobile genetic elements (MGEs). Nevertheless, the influence of dissolved oxygen (DO) levels on mobility of antibiotic resistance genes (ARGs) in response to ROS-induced stress remains elusive. Thus, the study employs metagenomic assembly and binning approaches to decipher mobility potential and co-occurrence frequency of ARGs and MGEs under hyperoxic (5.5-7 mgL<sup>- 1</sup>), normoxic (2.5-4 mgL<sup>- 1</sup>), and hypoxic (0.5-1 mgL<sup>- 1</sup>) conditions in lab-scale bioreactor for 6 months. Among 163 high-quality metagenome-assembled genomes (MAGs) recovered from 13 metagenomes, 42 MAGs harboured multiple ARGs and were assigned to priority pathogen group. Total ARG count increased by 4.3 and 2.5% in hyperoxic and normoxic, but decreased by 0.53% in hypoxic conditions after 150 days. On contrary, MGE count increased by 7.3-1.3% in all the DO levels, with only two ARGs showed positive correlation with MGEs in hypoxic compared to 20 ARGs under hyperoxic conditions. Opportunistic pathogens (Escherichia, Klebsiella, Clostridium, and Proteus) were detected as potential hosts of ARGs wherein co-localisation of critical ARG gene cassette (sul1, dfr1,adeF, and qacC) were identified in class 1 integron/Tn1 family transposons. Thus, enhanced co-occurrence frequency of ARGs with MGEs in pathogens suggested promotion of ARGs mobility under oxidative stress. The study offers valuable insights into ARG dissemination and hosts dynamics that is essential for controlling oxygen-related stress for mitigating MGEs and ARGs in the environment.</p>\",\"PeriodicalId\":23703,\"journal\":{\"name\":\"World journal of microbiology & biotechnology\",\"volume\":\"40 5\",\"pages\":\"142\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World journal of microbiology & biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11274-024-03952-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-024-03952-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Oxygen mediated mobilization and co-occurrence of antibiotic resistance in lab-scale bioreactor using metagenomic binning.
Sub-lethal levels of antibiotic stimulate bacteria to generate reactive oxygen species (ROS) that promotes emergence and spread of antibiotic resistance mediated by mobile genetic elements (MGEs). Nevertheless, the influence of dissolved oxygen (DO) levels on mobility of antibiotic resistance genes (ARGs) in response to ROS-induced stress remains elusive. Thus, the study employs metagenomic assembly and binning approaches to decipher mobility potential and co-occurrence frequency of ARGs and MGEs under hyperoxic (5.5-7 mgL- 1), normoxic (2.5-4 mgL- 1), and hypoxic (0.5-1 mgL- 1) conditions in lab-scale bioreactor for 6 months. Among 163 high-quality metagenome-assembled genomes (MAGs) recovered from 13 metagenomes, 42 MAGs harboured multiple ARGs and were assigned to priority pathogen group. Total ARG count increased by 4.3 and 2.5% in hyperoxic and normoxic, but decreased by 0.53% in hypoxic conditions after 150 days. On contrary, MGE count increased by 7.3-1.3% in all the DO levels, with only two ARGs showed positive correlation with MGEs in hypoxic compared to 20 ARGs under hyperoxic conditions. Opportunistic pathogens (Escherichia, Klebsiella, Clostridium, and Proteus) were detected as potential hosts of ARGs wherein co-localisation of critical ARG gene cassette (sul1, dfr1,adeF, and qacC) were identified in class 1 integron/Tn1 family transposons. Thus, enhanced co-occurrence frequency of ARGs with MGEs in pathogens suggested promotion of ARGs mobility under oxidative stress. The study offers valuable insights into ARG dissemination and hosts dynamics that is essential for controlling oxygen-related stress for mitigating MGEs and ARGs in the environment.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.