Emanuele Rezoagli , Simone Redaelli , Edward A. Bittner , Roberto Fumagalli , Fumito Ichinose , Lorenzo Berra
{"title":"溶血对心肺旁路术后肺动脉顺应性和右心室收缩功能的影响","authors":"Emanuele Rezoagli , Simone Redaelli , Edward A. Bittner , Roberto Fumagalli , Fumito Ichinose , Lorenzo Berra","doi":"10.1016/j.niox.2024.03.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Cardiopulmonary bypass (CPB) is associated with intravascular hemolysis which depletes endogenous nitric oxide (NO). The impact of hemolysis on pulmonary arterial compliance (PAC) and right ventricular systolic function has not been explored yet. We hypothesized that decreased NO availability is associated with worse PAC and right ventricular systolic function after CPB.</p></div><div><h3>Methods</h3><p>This is a secondary analysis of an observational cohort study in patients undergoing cardiac surgery with CPB at Massachusetts General Hospital, USA (2014–2015). We assessed PAC (stroke volume/pulmonary artery pulse pressure ratio), and right ventricular function index (RVFI) (systolic pulmonary arterial pressure/cardiac output), as well as NO consumption at 15 min, 4 h and 12 h after CPB. Patients were stratified by CPB duration. Further, we assessed the association between changes in NO consumption with PAC and RVFI between 15min and 4 h after CPB.</p></div><div><h3>Results</h3><p>PAC was lowest at 15min after CPB and improved over time (n = 50). RVFI was highest -worse right ventricular function- at CPB end and gradually decreased. Changes in hemolysis, PAC and RVFI differed over time by CPB duration. PAC inversely correlated with total pulmonary resistance (TPR). TPR and PAC positively and negatively correlated with RVFI, respectively. NO consumption between 15min and 4 h after CPB correlated with changes in PAC (−0.28 ml/mmHg, 95%CI −0.49 to −0.01, p = 0.012) and RVFI (0.14 mmHg*L<sup>−1</sup>*min, 95%CI 0.10 to 0.18, p < 0.001) after multivariable adjustments.</p></div><div><h3>Conclusion</h3><p>PAC and RVFI are worse at CPB end and improve over time. Depletion of endogenous NO may contribute to explain changes in PAC and RVFI after CPB.</p></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1089860324000405/pdfft?md5=73b385252e380faa74b2e9b63df47951&pid=1-s2.0-S1089860324000405-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Role of hemolysis on pulmonary arterial compliance and right ventricular systolic function after cardiopulmonary bypass\",\"authors\":\"Emanuele Rezoagli , Simone Redaelli , Edward A. Bittner , Roberto Fumagalli , Fumito Ichinose , Lorenzo Berra\",\"doi\":\"10.1016/j.niox.2024.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Cardiopulmonary bypass (CPB) is associated with intravascular hemolysis which depletes endogenous nitric oxide (NO). The impact of hemolysis on pulmonary arterial compliance (PAC) and right ventricular systolic function has not been explored yet. We hypothesized that decreased NO availability is associated with worse PAC and right ventricular systolic function after CPB.</p></div><div><h3>Methods</h3><p>This is a secondary analysis of an observational cohort study in patients undergoing cardiac surgery with CPB at Massachusetts General Hospital, USA (2014–2015). We assessed PAC (stroke volume/pulmonary artery pulse pressure ratio), and right ventricular function index (RVFI) (systolic pulmonary arterial pressure/cardiac output), as well as NO consumption at 15 min, 4 h and 12 h after CPB. Patients were stratified by CPB duration. Further, we assessed the association between changes in NO consumption with PAC and RVFI between 15min and 4 h after CPB.</p></div><div><h3>Results</h3><p>PAC was lowest at 15min after CPB and improved over time (n = 50). RVFI was highest -worse right ventricular function- at CPB end and gradually decreased. Changes in hemolysis, PAC and RVFI differed over time by CPB duration. PAC inversely correlated with total pulmonary resistance (TPR). TPR and PAC positively and negatively correlated with RVFI, respectively. NO consumption between 15min and 4 h after CPB correlated with changes in PAC (−0.28 ml/mmHg, 95%CI −0.49 to −0.01, p = 0.012) and RVFI (0.14 mmHg*L<sup>−1</sup>*min, 95%CI 0.10 to 0.18, p < 0.001) after multivariable adjustments.</p></div><div><h3>Conclusion</h3><p>PAC and RVFI are worse at CPB end and improve over time. Depletion of endogenous NO may contribute to explain changes in PAC and RVFI after CPB.</p></div>\",\"PeriodicalId\":19357,\"journal\":{\"name\":\"Nitric oxide : biology and chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1089860324000405/pdfft?md5=73b385252e380faa74b2e9b63df47951&pid=1-s2.0-S1089860324000405-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nitric oxide : biology and chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1089860324000405\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nitric oxide : biology and chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1089860324000405","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Role of hemolysis on pulmonary arterial compliance and right ventricular systolic function after cardiopulmonary bypass
Background
Cardiopulmonary bypass (CPB) is associated with intravascular hemolysis which depletes endogenous nitric oxide (NO). The impact of hemolysis on pulmonary arterial compliance (PAC) and right ventricular systolic function has not been explored yet. We hypothesized that decreased NO availability is associated with worse PAC and right ventricular systolic function after CPB.
Methods
This is a secondary analysis of an observational cohort study in patients undergoing cardiac surgery with CPB at Massachusetts General Hospital, USA (2014–2015). We assessed PAC (stroke volume/pulmonary artery pulse pressure ratio), and right ventricular function index (RVFI) (systolic pulmonary arterial pressure/cardiac output), as well as NO consumption at 15 min, 4 h and 12 h after CPB. Patients were stratified by CPB duration. Further, we assessed the association between changes in NO consumption with PAC and RVFI between 15min and 4 h after CPB.
Results
PAC was lowest at 15min after CPB and improved over time (n = 50). RVFI was highest -worse right ventricular function- at CPB end and gradually decreased. Changes in hemolysis, PAC and RVFI differed over time by CPB duration. PAC inversely correlated with total pulmonary resistance (TPR). TPR and PAC positively and negatively correlated with RVFI, respectively. NO consumption between 15min and 4 h after CPB correlated with changes in PAC (−0.28 ml/mmHg, 95%CI −0.49 to −0.01, p = 0.012) and RVFI (0.14 mmHg*L−1*min, 95%CI 0.10 to 0.18, p < 0.001) after multivariable adjustments.
Conclusion
PAC and RVFI are worse at CPB end and improve over time. Depletion of endogenous NO may contribute to explain changes in PAC and RVFI after CPB.
期刊介绍:
Nitric Oxide includes original research, methodology papers and reviews relating to nitric oxide and other gasotransmitters such as hydrogen sulfide and carbon monoxide. Special emphasis is placed on the biological chemistry, physiology, pharmacology, enzymology and pathological significance of these molecules in human health and disease. The journal also accepts manuscripts relating to plant and microbial studies involving these molecules.