衰老对多巴胺能系统的神经生物学影响:综述。

IF 2.7 4区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Gabriel S. Rocha , Marco Aurelio M. Freire , Karina M. Paiva , Rodrigo F. Oliveira , Paulo Leonardo A.G. Morais , José Ronaldo Santos , José Rodolfo L.P. Cavalcanti
{"title":"衰老对多巴胺能系统的神经生物学影响:综述。","authors":"Gabriel S. Rocha ,&nbsp;Marco Aurelio M. Freire ,&nbsp;Karina M. Paiva ,&nbsp;Rodrigo F. Oliveira ,&nbsp;Paulo Leonardo A.G. Morais ,&nbsp;José Ronaldo Santos ,&nbsp;José Rodolfo L.P. Cavalcanti","doi":"10.1016/j.jchemneu.2024.102415","DOIUrl":null,"url":null,"abstract":"<div><p>Over time, the body undergoes a natural, multifactorial, and ongoing process named senescence, which induces changes at the molecular, cellular, and micro-anatomical levels in many body systems. The brain, being a highly complex organ, is particularly affected by this process, potentially impairing its numerous functions. The brain relies on chemical messengers known as neurotransmitters to function properly, with dopamine being one of the most crucial. This catecholamine is responsible for a broad range of critical roles in the central nervous system, including movement, learning, cognition, motivation, emotion, reward, hormonal release, memory consolidation, visual performance, sexual drive, modulation of circadian rhythms, and brain development. In the present review, we thoroughly examine the impact of senescence on the dopaminergic system, with a primary focus on the classic delimitations of the dopaminergic nuclei from A8 to A17. We provide in-depth information about their anatomy and function, particularly addressing how senescence affects each of these nuclei.</p></div>","PeriodicalId":15324,"journal":{"name":"Journal of chemical neuroanatomy","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The neurobiological effects of senescence on dopaminergic system: A comprehensive review\",\"authors\":\"Gabriel S. Rocha ,&nbsp;Marco Aurelio M. Freire ,&nbsp;Karina M. Paiva ,&nbsp;Rodrigo F. Oliveira ,&nbsp;Paulo Leonardo A.G. Morais ,&nbsp;José Ronaldo Santos ,&nbsp;José Rodolfo L.P. Cavalcanti\",\"doi\":\"10.1016/j.jchemneu.2024.102415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Over time, the body undergoes a natural, multifactorial, and ongoing process named senescence, which induces changes at the molecular, cellular, and micro-anatomical levels in many body systems. The brain, being a highly complex organ, is particularly affected by this process, potentially impairing its numerous functions. The brain relies on chemical messengers known as neurotransmitters to function properly, with dopamine being one of the most crucial. This catecholamine is responsible for a broad range of critical roles in the central nervous system, including movement, learning, cognition, motivation, emotion, reward, hormonal release, memory consolidation, visual performance, sexual drive, modulation of circadian rhythms, and brain development. In the present review, we thoroughly examine the impact of senescence on the dopaminergic system, with a primary focus on the classic delimitations of the dopaminergic nuclei from A8 to A17. We provide in-depth information about their anatomy and function, particularly addressing how senescence affects each of these nuclei.</p></div>\",\"PeriodicalId\":15324,\"journal\":{\"name\":\"Journal of chemical neuroanatomy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of chemical neuroanatomy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0891061824000280\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chemical neuroanatomy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891061824000280","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

随着时间的推移,人体会经历一个自然的、多因素的、持续的过程,这个过程被称为衰老,它在分子、细胞和微观解剖学层面诱发了人体许多系统的变化。大脑作为一个高度复杂的器官,尤其会受到这一过程的影响,有可能损害其众多功能。大脑依靠被称为神经递质的化学信使来正常工作,多巴胺是其中最重要的一种。这种儿茶酚胺在中枢神经系统中发挥着广泛的重要作用,包括运动、学习、认知、动机、情感、奖赏、荷尔蒙释放、记忆巩固、视觉表现、性驱动力、昼夜节律调节和大脑发育。在这篇综合性综述中,我们深入研究了衰老对多巴胺能系统的影响,主要关注 A8 至 A17 多巴胺能核的经典划分。我们深入探讨了它们的解剖和功能,尤其是衰老是如何影响这些核团的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The neurobiological effects of senescence on dopaminergic system: A comprehensive review

Over time, the body undergoes a natural, multifactorial, and ongoing process named senescence, which induces changes at the molecular, cellular, and micro-anatomical levels in many body systems. The brain, being a highly complex organ, is particularly affected by this process, potentially impairing its numerous functions. The brain relies on chemical messengers known as neurotransmitters to function properly, with dopamine being one of the most crucial. This catecholamine is responsible for a broad range of critical roles in the central nervous system, including movement, learning, cognition, motivation, emotion, reward, hormonal release, memory consolidation, visual performance, sexual drive, modulation of circadian rhythms, and brain development. In the present review, we thoroughly examine the impact of senescence on the dopaminergic system, with a primary focus on the classic delimitations of the dopaminergic nuclei from A8 to A17. We provide in-depth information about their anatomy and function, particularly addressing how senescence affects each of these nuclei.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of chemical neuroanatomy
Journal of chemical neuroanatomy 医学-神经科学
CiteScore
4.50
自引率
3.60%
发文量
87
审稿时长
62 days
期刊介绍: The Journal of Chemical Neuroanatomy publishes scientific reports relating the functional and biochemical aspects of the nervous system with its microanatomical organization. The scope of the journal concentrates on reports which combine microanatomical, biochemical, pharmacological and behavioural approaches. Papers should offer original data correlating the morphology of the nervous system (the brain and spinal cord in particular) with its biochemistry. The Journal of Chemical Neuroanatomy is particularly interested in publishing important studies performed with up-to-date methodology utilizing sensitive chemical microassays, hybridoma technology, immunocytochemistry, in situ hybridization and receptor radioautography, to name a few examples. The Journal of Chemical Neuroanatomy is the natural vehicle for integrated studies utilizing these approaches. The articles will be selected by the editorial board and invited reviewers on the basis of their excellence and potential contribution to this field of neurosciences. Both in vivo and in vitro integrated studies in chemical neuroanatomy are appropriate subjects of interest to the journal. These studies should relate only to vertebrate species with particular emphasis on the mammalian and primate nervous systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信