利用液相色谱-串联质谱法同时检测干血斑中的睾酮、诺龙和勃地酮酯,以控制体育运动中的兴奋剂使用。

IF 2.6 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Drug Testing and Analysis Pub Date : 2025-01-01 Epub Date: 2024-03-23 DOI:10.1002/dta.3681
Asami Miyamoto, Masanori Ota, Mitsuhiko Sato, Masato Okano
{"title":"利用液相色谱-串联质谱法同时检测干血斑中的睾酮、诺龙和勃地酮酯,以控制体育运动中的兴奋剂使用。","authors":"Asami Miyamoto, Masanori Ota, Mitsuhiko Sato, Masato Okano","doi":"10.1002/dta.3681","DOIUrl":null,"url":null,"abstract":"<p><p>Testosterone, nandrolone, and boldenone, which are listed as doping substances on the World Anti-Doping Agency Prohibited List, are mostly available commercially in esterified forms. Isotope ratio mass spectrometry (IRMS) represents a key tool for identifying these substances, as they are hydrolyzed and discharged in the urine as pseudo-endogenous substances. However, IRMS, which comprises a complicated process, cannot achieve the direct detection of steroid esters in blood samples. These substances can be detected using dried blood spots (DBSs), reducing the impact of esterase hydrolysis. Here, a simultaneous liquid chromatography-tandem mass spectrometry method for detecting 28 steroid (13 testosterone, nine nandrolone, and six boldenone) esters was developed using three DBS types of samples, including a cellulose paper and polymer. The substances were first derivatized with methyloxime to increase their sensitivities (the limits of detection were <0.1-0.4, <0.1-0.9, and <0.1-0.9 ng/mL for the testosterone, nandrolone, and boldenone esters, respectively). Further, the DBS absorbents were verified since the effect of interferences depended on it. Next, a study involving seven participants was conducted to detect intramuscularly administered testosterone enanthate (100 mg). Polymer and cellulose papers were used to collect blood from their upper arms and fingertips, respectively, and testosterone enanthate was identified and detectable at both blood-collection sites for up to 144 and 216 h, respectively. Furthermore, testosterone enanthate was detectable in the DBS samples stored under refrigeration after 6 months, indicating the stable nature of DBS.</p>","PeriodicalId":160,"journal":{"name":"Drug Testing and Analysis","volume":" ","pages":"42-55"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous detection of testosterone, nandrolone, and boldenone esters in dried blood spots for doping control in sports by liquid chromatography-tandem mass spectrometry.\",\"authors\":\"Asami Miyamoto, Masanori Ota, Mitsuhiko Sato, Masato Okano\",\"doi\":\"10.1002/dta.3681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Testosterone, nandrolone, and boldenone, which are listed as doping substances on the World Anti-Doping Agency Prohibited List, are mostly available commercially in esterified forms. Isotope ratio mass spectrometry (IRMS) represents a key tool for identifying these substances, as they are hydrolyzed and discharged in the urine as pseudo-endogenous substances. However, IRMS, which comprises a complicated process, cannot achieve the direct detection of steroid esters in blood samples. These substances can be detected using dried blood spots (DBSs), reducing the impact of esterase hydrolysis. Here, a simultaneous liquid chromatography-tandem mass spectrometry method for detecting 28 steroid (13 testosterone, nine nandrolone, and six boldenone) esters was developed using three DBS types of samples, including a cellulose paper and polymer. The substances were first derivatized with methyloxime to increase their sensitivities (the limits of detection were <0.1-0.4, <0.1-0.9, and <0.1-0.9 ng/mL for the testosterone, nandrolone, and boldenone esters, respectively). Further, the DBS absorbents were verified since the effect of interferences depended on it. Next, a study involving seven participants was conducted to detect intramuscularly administered testosterone enanthate (100 mg). Polymer and cellulose papers were used to collect blood from their upper arms and fingertips, respectively, and testosterone enanthate was identified and detectable at both blood-collection sites for up to 144 and 216 h, respectively. Furthermore, testosterone enanthate was detectable in the DBS samples stored under refrigeration after 6 months, indicating the stable nature of DBS.</p>\",\"PeriodicalId\":160,\"journal\":{\"name\":\"Drug Testing and Analysis\",\"volume\":\" \",\"pages\":\"42-55\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Testing and Analysis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/dta.3681\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Testing and Analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/dta.3681","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

睾酮(Testosterone)、诺龙(nandrolone)和勃地酮(boldenone)被列入世界反兴奋剂机构的禁用清单,它们大多以酯化形式在市场上出售。同位素比质谱法(IRMS)是鉴别这些物质的重要工具,因为它们会水解并以假内源性物质的形式排入尿液。然而,由复杂过程组成的 IRMS 无法直接检测血液样本中的类固醇酯。使用干血斑(DBS)可以检测这些物质,从而减少酯酶水解的影响。本文利用纤维素纸和聚合物等三种 DBS 样品,开发了一种同时检测 28 种类固醇(13 种睾酮、9 种诺龙和 6 种勃地 酮)酯的液相色谱-串联质谱法。首先用甲基肟对这些物质进行衍生处理,以提高它们的灵敏度(检测限分别为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simultaneous detection of testosterone, nandrolone, and boldenone esters in dried blood spots for doping control in sports by liquid chromatography-tandem mass spectrometry.

Testosterone, nandrolone, and boldenone, which are listed as doping substances on the World Anti-Doping Agency Prohibited List, are mostly available commercially in esterified forms. Isotope ratio mass spectrometry (IRMS) represents a key tool for identifying these substances, as they are hydrolyzed and discharged in the urine as pseudo-endogenous substances. However, IRMS, which comprises a complicated process, cannot achieve the direct detection of steroid esters in blood samples. These substances can be detected using dried blood spots (DBSs), reducing the impact of esterase hydrolysis. Here, a simultaneous liquid chromatography-tandem mass spectrometry method for detecting 28 steroid (13 testosterone, nine nandrolone, and six boldenone) esters was developed using three DBS types of samples, including a cellulose paper and polymer. The substances were first derivatized with methyloxime to increase their sensitivities (the limits of detection were <0.1-0.4, <0.1-0.9, and <0.1-0.9 ng/mL for the testosterone, nandrolone, and boldenone esters, respectively). Further, the DBS absorbents were verified since the effect of interferences depended on it. Next, a study involving seven participants was conducted to detect intramuscularly administered testosterone enanthate (100 mg). Polymer and cellulose papers were used to collect blood from their upper arms and fingertips, respectively, and testosterone enanthate was identified and detectable at both blood-collection sites for up to 144 and 216 h, respectively. Furthermore, testosterone enanthate was detectable in the DBS samples stored under refrigeration after 6 months, indicating the stable nature of DBS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Testing and Analysis
Drug Testing and Analysis BIOCHEMICAL RESEARCH METHODS-CHEMISTRY, ANALYTICAL
CiteScore
5.90
自引率
24.10%
发文量
191
审稿时长
2.3 months
期刊介绍: As the incidence of drugs escalates in 21st century living, their detection and analysis have become increasingly important. Sport, the workplace, crime investigation, homeland security, the pharmaceutical industry and the environment are just some of the high profile arenas in which analytical testing has provided an important investigative tool for uncovering the presence of extraneous substances. In addition to the usual publishing fare of primary research articles, case reports and letters, Drug Testing and Analysis offers a unique combination of; ‘How to’ material such as ‘Tutorials’ and ‘Reviews’, Speculative pieces (‘Commentaries’ and ‘Perspectives'', providing a broader scientific and social context to the aspects of analytical testing), ‘Annual banned substance reviews’ (delivering a critical evaluation of the methods used in the characterization of established and newly outlawed compounds). Rather than focus on the application of a single technique, Drug Testing and Analysis employs a unique multidisciplinary approach to the field of controversial compound determination. Papers discussing chromatography, mass spectrometry, immunological approaches, 1D/2D gel electrophoresis, to name just a few select methods, are welcomed where their application is related to any of the six key topics listed below.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信