具有空间依赖系数的扩散方程和分形考尔型网络

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
{"title":"具有空间依赖系数的扩散方程和分形考尔型网络","authors":"","doi":"10.1007/s13540-024-00264-6","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this article, we formulate and solve the representation problem for diffusion equations: giving a discretization of the Laplace transform of a diffusion equation under a space discretization over a space scale determined by an increment <span> <span>\\(h&gt;0\\)</span> </span>, can we construct a continuous in <em>h</em> family of Cauer ladder networks whose constitutive equations match for all <span> <span>\\(h&gt;0\\)</span> </span> the discretization. It is proved that for a finite differences discretization over a uniform geometric space scale, the representation problem over fractal Cauer networks is possible if and only if the coefficients of the diffusion are exponential functions in the space variable. Such diffusion equations admit a (Laplace) transfer function with a fractional behavior whose exponent is explicit. This allows us to justify previous works made by Sabatier and co-workers in [<span>15</span>, <span>16</span>] and Oustaloup and co-workers [<span>14</span>].</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffusion equations with spatially dependent coefficients and fractal Cauer-type networks\",\"authors\":\"\",\"doi\":\"10.1007/s13540-024-00264-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In this article, we formulate and solve the representation problem for diffusion equations: giving a discretization of the Laplace transform of a diffusion equation under a space discretization over a space scale determined by an increment <span> <span>\\\\(h&gt;0\\\\)</span> </span>, can we construct a continuous in <em>h</em> family of Cauer ladder networks whose constitutive equations match for all <span> <span>\\\\(h&gt;0\\\\)</span> </span> the discretization. It is proved that for a finite differences discretization over a uniform geometric space scale, the representation problem over fractal Cauer networks is possible if and only if the coefficients of the diffusion are exponential functions in the space variable. Such diffusion equations admit a (Laplace) transfer function with a fractional behavior whose exponent is explicit. This allows us to justify previous works made by Sabatier and co-workers in [<span>15</span>, <span>16</span>] and Oustaloup and co-workers [<span>14</span>].</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00264-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00264-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在本文中,我们提出并解决了扩散方程的表示问题:给定扩散方程的拉普拉斯变换在一个由增量\(h>0\)决定的空间尺度上的空间离散化下的离散化,我们能否构造一个连续于h的Cauer梯形网络族,其构成方程与所有\(h>0\)的离散化相匹配。研究证明,对于均匀几何空间尺度上的有限差分离散化,当且仅当扩散系数是空间变量中的指数函数时,分形考尔网络的表示问题是可能的。这种扩散方程允许一个具有分数行为的(拉普拉斯)传递函数,其指数是明确的。这使我们能够证明 Sabatier 及其合作者[15, 16]和 Oustaloup 及其合作者[14]之前所做工作的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diffusion equations with spatially dependent coefficients and fractal Cauer-type networks

Abstract

In this article, we formulate and solve the representation problem for diffusion equations: giving a discretization of the Laplace transform of a diffusion equation under a space discretization over a space scale determined by an increment \(h>0\) , can we construct a continuous in h family of Cauer ladder networks whose constitutive equations match for all \(h>0\) the discretization. It is proved that for a finite differences discretization over a uniform geometric space scale, the representation problem over fractal Cauer networks is possible if and only if the coefficients of the diffusion are exponential functions in the space variable. Such diffusion equations admit a (Laplace) transfer function with a fractional behavior whose exponent is explicit. This allows us to justify previous works made by Sabatier and co-workers in [15, 16] and Oustaloup and co-workers [14].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信