Gregor Buch, Andreas Schulz, Irene Schmidtmann, Konstantin Strauch, Philipp S. Wild
{"title":"双层变量选择方法的可解释性","authors":"Gregor Buch, Andreas Schulz, Irene Schmidtmann, Konstantin Strauch, Philipp S. Wild","doi":"10.1002/bimj.202300063","DOIUrl":null,"url":null,"abstract":"<p>Variable selection is usually performed to increase interpretability, as sparser models are easier to understand than full models. However, a focus on sparsity is not always suitable, for example, when features are related due to contextual similarities or high correlations. Here, it may be more appropriate to identify groups and their predictive members, a task that can be accomplished with bi-level selection procedures. To investigate whether such techniques lead to increased interpretability, group exponential LASSO (GEL), sparse group LASSO (SGL), composite minimax concave penalty (cMCP), and least absolute shrinkage, and selection operator (LASSO) as reference methods were used to select predictors in time-to-event, regression, and classification tasks in bootstrap samples from a cohort of 1001 patients. Different groupings based on prior knowledge, correlation structure, and random assignment were compared in terms of selection relevance, group consistency, and collinearity tolerance. The results show that bi-level selection methods are superior to LASSO in all criteria. The cMCP demonstrated superiority in selection relevance, while SGL was convincing in group consistency. An all-round capacity was achieved by GEL: the approach jointly selected correlated and content-related predictors while maintaining high selection relevance. This method seems recommendable when variables are grouped, and interpretation is of primary interest.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300063","citationCount":"0","resultStr":"{\"title\":\"Interpretability of bi-level variable selection methods\",\"authors\":\"Gregor Buch, Andreas Schulz, Irene Schmidtmann, Konstantin Strauch, Philipp S. Wild\",\"doi\":\"10.1002/bimj.202300063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Variable selection is usually performed to increase interpretability, as sparser models are easier to understand than full models. However, a focus on sparsity is not always suitable, for example, when features are related due to contextual similarities or high correlations. Here, it may be more appropriate to identify groups and their predictive members, a task that can be accomplished with bi-level selection procedures. To investigate whether such techniques lead to increased interpretability, group exponential LASSO (GEL), sparse group LASSO (SGL), composite minimax concave penalty (cMCP), and least absolute shrinkage, and selection operator (LASSO) as reference methods were used to select predictors in time-to-event, regression, and classification tasks in bootstrap samples from a cohort of 1001 patients. Different groupings based on prior knowledge, correlation structure, and random assignment were compared in terms of selection relevance, group consistency, and collinearity tolerance. The results show that bi-level selection methods are superior to LASSO in all criteria. The cMCP demonstrated superiority in selection relevance, while SGL was convincing in group consistency. An all-round capacity was achieved by GEL: the approach jointly selected correlated and content-related predictors while maintaining high selection relevance. This method seems recommendable when variables are grouped, and interpretation is of primary interest.</p>\",\"PeriodicalId\":55360,\"journal\":{\"name\":\"Biometrical Journal\",\"volume\":\"66 2\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300063\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300063\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300063","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Interpretability of bi-level variable selection methods
Variable selection is usually performed to increase interpretability, as sparser models are easier to understand than full models. However, a focus on sparsity is not always suitable, for example, when features are related due to contextual similarities or high correlations. Here, it may be more appropriate to identify groups and their predictive members, a task that can be accomplished with bi-level selection procedures. To investigate whether such techniques lead to increased interpretability, group exponential LASSO (GEL), sparse group LASSO (SGL), composite minimax concave penalty (cMCP), and least absolute shrinkage, and selection operator (LASSO) as reference methods were used to select predictors in time-to-event, regression, and classification tasks in bootstrap samples from a cohort of 1001 patients. Different groupings based on prior knowledge, correlation structure, and random assignment were compared in terms of selection relevance, group consistency, and collinearity tolerance. The results show that bi-level selection methods are superior to LASSO in all criteria. The cMCP demonstrated superiority in selection relevance, while SGL was convincing in group consistency. An all-round capacity was achieved by GEL: the approach jointly selected correlated and content-related predictors while maintaining high selection relevance. This method seems recommendable when variables are grouped, and interpretation is of primary interest.
期刊介绍:
Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.