预测开放教育能力中的性别问题:机器学习方法

IF 2.9 3区 教育学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Gerardo Ibarra-Vazquez;María Soledad Ramírez-Montoya;Mariana Buenestado-Fernández
{"title":"预测开放教育能力中的性别问题:机器学习方法","authors":"Gerardo Ibarra-Vazquez;María Soledad Ramírez-Montoya;Mariana Buenestado-Fernández","doi":"10.1109/TLT.2023.3336541","DOIUrl":null,"url":null,"abstract":"This article aims to study the performance of machine learning models in forecasting gender based on the students' open education competency perception. Data were collected from a convenience sample of 326 students from 26 countries using the eOpen instrument. The analysis comprises 1) a study of the students' perceptions of knowledge, skills, and attitudes or values related to open education and its subcompetencies from a 30-item questionnaire using machine learning models to forecast participants' gender, 2) validation of performance through cross-validation methods, 3) statistical analysis to find significant differences between machine learning models, and 4) an analysis from explainable machine learning models to find relevant features to forecast gender. The results confirm our hypothesis that the performance of machine learning models can effectively forecast gender based on the student's perceptions of knowledge, skills, and attitudes or values related to open education competency.","PeriodicalId":49191,"journal":{"name":"IEEE Transactions on Learning Technologies","volume":"17 ","pages":"1236-1247"},"PeriodicalIF":2.9000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10334475","citationCount":"0","resultStr":"{\"title\":\"Forecasting Gender in Open Education Competencies: A Machine Learning Approach\",\"authors\":\"Gerardo Ibarra-Vazquez;María Soledad Ramírez-Montoya;Mariana Buenestado-Fernández\",\"doi\":\"10.1109/TLT.2023.3336541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article aims to study the performance of machine learning models in forecasting gender based on the students' open education competency perception. Data were collected from a convenience sample of 326 students from 26 countries using the eOpen instrument. The analysis comprises 1) a study of the students' perceptions of knowledge, skills, and attitudes or values related to open education and its subcompetencies from a 30-item questionnaire using machine learning models to forecast participants' gender, 2) validation of performance through cross-validation methods, 3) statistical analysis to find significant differences between machine learning models, and 4) an analysis from explainable machine learning models to find relevant features to forecast gender. The results confirm our hypothesis that the performance of machine learning models can effectively forecast gender based on the student's perceptions of knowledge, skills, and attitudes or values related to open education competency.\",\"PeriodicalId\":49191,\"journal\":{\"name\":\"IEEE Transactions on Learning Technologies\",\"volume\":\"17 \",\"pages\":\"1236-1247\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10334475\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Learning Technologies\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10334475/\",\"RegionNum\":3,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Learning Technologies","FirstCategoryId":"95","ListUrlMain":"https://ieeexplore.ieee.org/document/10334475/","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在研究基于学生开放教育能力感知的机器学习模型在预测性别方面的性能。数据是使用 eOpen 工具从来自 26 个国家的 326 名学生中方便抽样收集的。分析包括:1)研究学生对与开放教育及其子能力相关的知识、技能和态度或价值观的感知,从 30 个项目的问卷中使用机器学习模型预测参与者的性别;2)通过交叉验证方法验证性能;3)统计分析以发现机器学习模型之间的显著差异;4)从可解释的机器学习模型中进行分析,以找到预测性别的相关特征。结果证实了我们的假设,即根据学生对开放教育能力相关知识、技能和态度或价值观的感知,机器学习模型的性能可以有效预测性别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting Gender in Open Education Competencies: A Machine Learning Approach
This article aims to study the performance of machine learning models in forecasting gender based on the students' open education competency perception. Data were collected from a convenience sample of 326 students from 26 countries using the eOpen instrument. The analysis comprises 1) a study of the students' perceptions of knowledge, skills, and attitudes or values related to open education and its subcompetencies from a 30-item questionnaire using machine learning models to forecast participants' gender, 2) validation of performance through cross-validation methods, 3) statistical analysis to find significant differences between machine learning models, and 4) an analysis from explainable machine learning models to find relevant features to forecast gender. The results confirm our hypothesis that the performance of machine learning models can effectively forecast gender based on the student's perceptions of knowledge, skills, and attitudes or values related to open education competency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Learning Technologies
IEEE Transactions on Learning Technologies COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
7.50
自引率
5.40%
发文量
82
审稿时长
>12 weeks
期刊介绍: The IEEE Transactions on Learning Technologies covers all advances in learning technologies and their applications, including but not limited to the following topics: innovative online learning systems; intelligent tutors; educational games; simulation systems for education and training; collaborative learning tools; learning with mobile devices; wearable devices and interfaces for learning; personalized and adaptive learning systems; tools for formative and summative assessment; tools for learning analytics and educational data mining; ontologies for learning systems; standards and web services that support learning; authoring tools for learning materials; computer support for peer tutoring; learning via computer-mediated inquiry, field, and lab work; social learning techniques; social networks and infrastructures for learning and knowledge sharing; and creation and management of learning objects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信