{"title":"应用微生物诱导碳酸盐沉淀作为控制海水入侵的物理屏障的统计和机器学习分析","authors":"Charalampos Konstantinou , Yuze Wang","doi":"10.1016/j.jconhyd.2024.104337","DOIUrl":null,"url":null,"abstract":"<div><p>Seawater intrusion in coastal aquifers is a significant problem that can be addressed through the construction of subsurface dams or physical cut-off barriers. An alternative method is the use of microbially induced carbonate precipitation (MICP) to reduce the hydraulic conductivity of the porous medium and create a physical barrier. However, the effectiveness of this method depends on various factors, and the scientific literature presents conflicting results, making it challenging to generalise the findings. To overcome this challenge, a statistical and machine learning (ML) approach is employed to infer the causes for the reduction in hydraulic conductivity and identify the optimum MICP parameters for preventing seawater intrusion. The study involves data curation, exploratory analysis, and the development of various models to fit the input data (k-Nearest Neighbours – kNN, Support Vector Regression – SVR, Random Forests – RF, Gradient Boosting – XgBoost, Linear model with interaction terms, Ensemble learning algorithms with weighted averages – EnL-WA and stacking – EnL-Stack). The models performed reasonably well in the region where permeability reduction is sensitive to carbonate increase capturing the permeability reduction profile with respect to cementation level while demonstrating that they can be used in initial assessments of the specific conditions (e.g., soil properties). The best performing algorithms were the EnL-Stack and RF followed by XgBoost and SVR. The MICP method is effective in reducing hydraulic conductivity provided that the various biochemical parameters are optimised. Critical biochemical parameters for successful MICP formulations are the bacterial optical density, the urease activity, calcium chloride concentration and flow rate as well as the interaction terms across the properties of the porous media and the biochemical parameters. The models were used to identify the optimum MICP formulation for various porous media properties and the maximum permeability reduction profiles across cementation levels have been derived.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical and machine learning analysis for the application of microbially induced carbonate precipitation as a physical barrier to control seawater intrusion\",\"authors\":\"Charalampos Konstantinou , Yuze Wang\",\"doi\":\"10.1016/j.jconhyd.2024.104337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Seawater intrusion in coastal aquifers is a significant problem that can be addressed through the construction of subsurface dams or physical cut-off barriers. An alternative method is the use of microbially induced carbonate precipitation (MICP) to reduce the hydraulic conductivity of the porous medium and create a physical barrier. However, the effectiveness of this method depends on various factors, and the scientific literature presents conflicting results, making it challenging to generalise the findings. To overcome this challenge, a statistical and machine learning (ML) approach is employed to infer the causes for the reduction in hydraulic conductivity and identify the optimum MICP parameters for preventing seawater intrusion. The study involves data curation, exploratory analysis, and the development of various models to fit the input data (k-Nearest Neighbours – kNN, Support Vector Regression – SVR, Random Forests – RF, Gradient Boosting – XgBoost, Linear model with interaction terms, Ensemble learning algorithms with weighted averages – EnL-WA and stacking – EnL-Stack). The models performed reasonably well in the region where permeability reduction is sensitive to carbonate increase capturing the permeability reduction profile with respect to cementation level while demonstrating that they can be used in initial assessments of the specific conditions (e.g., soil properties). The best performing algorithms were the EnL-Stack and RF followed by XgBoost and SVR. The MICP method is effective in reducing hydraulic conductivity provided that the various biochemical parameters are optimised. Critical biochemical parameters for successful MICP formulations are the bacterial optical density, the urease activity, calcium chloride concentration and flow rate as well as the interaction terms across the properties of the porous media and the biochemical parameters. The models were used to identify the optimum MICP formulation for various porous media properties and the maximum permeability reduction profiles across cementation levels have been derived.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016977222400041X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016977222400041X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Statistical and machine learning analysis for the application of microbially induced carbonate precipitation as a physical barrier to control seawater intrusion
Seawater intrusion in coastal aquifers is a significant problem that can be addressed through the construction of subsurface dams or physical cut-off barriers. An alternative method is the use of microbially induced carbonate precipitation (MICP) to reduce the hydraulic conductivity of the porous medium and create a physical barrier. However, the effectiveness of this method depends on various factors, and the scientific literature presents conflicting results, making it challenging to generalise the findings. To overcome this challenge, a statistical and machine learning (ML) approach is employed to infer the causes for the reduction in hydraulic conductivity and identify the optimum MICP parameters for preventing seawater intrusion. The study involves data curation, exploratory analysis, and the development of various models to fit the input data (k-Nearest Neighbours – kNN, Support Vector Regression – SVR, Random Forests – RF, Gradient Boosting – XgBoost, Linear model with interaction terms, Ensemble learning algorithms with weighted averages – EnL-WA and stacking – EnL-Stack). The models performed reasonably well in the region where permeability reduction is sensitive to carbonate increase capturing the permeability reduction profile with respect to cementation level while demonstrating that they can be used in initial assessments of the specific conditions (e.g., soil properties). The best performing algorithms were the EnL-Stack and RF followed by XgBoost and SVR. The MICP method is effective in reducing hydraulic conductivity provided that the various biochemical parameters are optimised. Critical biochemical parameters for successful MICP formulations are the bacterial optical density, the urease activity, calcium chloride concentration and flow rate as well as the interaction terms across the properties of the porous media and the biochemical parameters. The models were used to identify the optimum MICP formulation for various porous media properties and the maximum permeability reduction profiles across cementation levels have been derived.