Mahdi Hossain Nabil , Joyon Barua , Umme Riazul Jannat Eiva , Md. Aasim Ullah , Tanzi Ahmed Chowdhury , S M Shahenewaz Siddiquee , Md. Eftekhar Alam , Remon Das
{"title":"巴卡利亚 15 兆瓦商业规模地面并网太阳能光伏系统的技术经济分析:为 BPDB 提议的可行性研究","authors":"Mahdi Hossain Nabil , Joyon Barua , Umme Riazul Jannat Eiva , Md. Aasim Ullah , Tanzi Ahmed Chowdhury , S M Shahenewaz Siddiquee , Md. Eftekhar Alam , Remon Das","doi":"10.1016/j.nexus.2024.100286","DOIUrl":null,"url":null,"abstract":"<div><p>Renewable energy systems, such as solar power, are becoming increasingly important worldwide due to the limited supply of non-renewable energy sources. Solar power stands out as a practical choice for electricity generation because it's simple to set up and costs less than other renewable options. Solar-based on-grid or grid-tied systems are more effective compared to other PV grid systems due to their more reasonable installation system, favorable maintenance, and less complex system. This study was designed with a solar-based grid-tied system. This study evaluates the performance and economic viability of a 15 MW on-grid photovoltaic (PV) system in Bakalia Char, Chittagong, Bangladesh, and will propose this study for the Bangladesh Power Development Board (BPDB). Developing a clean energy system in Bangladesh is the main purpose of this study. This system performed efficiently, with an 84.03 % performance ratio, produced energy of 21,510.186 MWh/year and proved economically attractive with a 4.5-year payback period, a competitive electricity cost of 0.024 USD/kWh, and a 389 % return on investment(ROI%). Using software like PVsyst and SketchUp ensures precise system design and optimal module placement. Also, use a better PV panel system whose efficiency is higher than that of another PV panel system designed for a similar project. This system boosts local electricity production and aligns with sustainable energy goals. Its success is a valuable model for future solar projects in similar regions facing energy challenges. The system also shows significant environmental benefits, with a projected reduction of approximately 252,168.5 tons of CO<sub>2</sub> emissions over its operational lifespan.</p></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772427124000172/pdfft?md5=a7a4aad2d1b3a845c71e1d1865b2214a&pid=1-s2.0-S2772427124000172-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Techno-economic analysis of commercial-scale 15 MW on-grid ground solar PV systems in Bakalia: A feasibility study proposed for BPDB\",\"authors\":\"Mahdi Hossain Nabil , Joyon Barua , Umme Riazul Jannat Eiva , Md. Aasim Ullah , Tanzi Ahmed Chowdhury , S M Shahenewaz Siddiquee , Md. Eftekhar Alam , Remon Das\",\"doi\":\"10.1016/j.nexus.2024.100286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Renewable energy systems, such as solar power, are becoming increasingly important worldwide due to the limited supply of non-renewable energy sources. Solar power stands out as a practical choice for electricity generation because it's simple to set up and costs less than other renewable options. Solar-based on-grid or grid-tied systems are more effective compared to other PV grid systems due to their more reasonable installation system, favorable maintenance, and less complex system. This study was designed with a solar-based grid-tied system. This study evaluates the performance and economic viability of a 15 MW on-grid photovoltaic (PV) system in Bakalia Char, Chittagong, Bangladesh, and will propose this study for the Bangladesh Power Development Board (BPDB). Developing a clean energy system in Bangladesh is the main purpose of this study. This system performed efficiently, with an 84.03 % performance ratio, produced energy of 21,510.186 MWh/year and proved economically attractive with a 4.5-year payback period, a competitive electricity cost of 0.024 USD/kWh, and a 389 % return on investment(ROI%). Using software like PVsyst and SketchUp ensures precise system design and optimal module placement. Also, use a better PV panel system whose efficiency is higher than that of another PV panel system designed for a similar project. This system boosts local electricity production and aligns with sustainable energy goals. Its success is a valuable model for future solar projects in similar regions facing energy challenges. The system also shows significant environmental benefits, with a projected reduction of approximately 252,168.5 tons of CO<sub>2</sub> emissions over its operational lifespan.</p></div>\",\"PeriodicalId\":93548,\"journal\":{\"name\":\"Energy nexus\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772427124000172/pdfft?md5=a7a4aad2d1b3a845c71e1d1865b2214a&pid=1-s2.0-S2772427124000172-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy nexus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772427124000172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy nexus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772427124000172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Techno-economic analysis of commercial-scale 15 MW on-grid ground solar PV systems in Bakalia: A feasibility study proposed for BPDB
Renewable energy systems, such as solar power, are becoming increasingly important worldwide due to the limited supply of non-renewable energy sources. Solar power stands out as a practical choice for electricity generation because it's simple to set up and costs less than other renewable options. Solar-based on-grid or grid-tied systems are more effective compared to other PV grid systems due to their more reasonable installation system, favorable maintenance, and less complex system. This study was designed with a solar-based grid-tied system. This study evaluates the performance and economic viability of a 15 MW on-grid photovoltaic (PV) system in Bakalia Char, Chittagong, Bangladesh, and will propose this study for the Bangladesh Power Development Board (BPDB). Developing a clean energy system in Bangladesh is the main purpose of this study. This system performed efficiently, with an 84.03 % performance ratio, produced energy of 21,510.186 MWh/year and proved economically attractive with a 4.5-year payback period, a competitive electricity cost of 0.024 USD/kWh, and a 389 % return on investment(ROI%). Using software like PVsyst and SketchUp ensures precise system design and optimal module placement. Also, use a better PV panel system whose efficiency is higher than that of another PV panel system designed for a similar project. This system boosts local electricity production and aligns with sustainable energy goals. Its success is a valuable model for future solar projects in similar regions facing energy challenges. The system also shows significant environmental benefits, with a projected reduction of approximately 252,168.5 tons of CO2 emissions over its operational lifespan.
Energy nexusEnergy (General), Ecological Modelling, Renewable Energy, Sustainability and the Environment, Water Science and Technology, Agricultural and Biological Sciences (General)