特性 p 中具有大线性自变群的平面曲线

IF 1.2 3区 数学 Q1 MATHEMATICS
Herivelto Borges , Gábor Korchmáros , Pietro Speziali
{"title":"特性 p 中具有大线性自变群的平面曲线","authors":"Herivelto Borges ,&nbsp;Gábor Korchmáros ,&nbsp;Pietro Speziali","doi":"10.1016/j.ffa.2024.102402","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>G</em> be a subgroup of the three dimensional projective group <span><math><mtext>PGL</mtext><mo>(</mo><mn>3</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> defined over a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> of order <em>q</em>, viewed as a subgroup of <span><math><mtext>PGL</mtext><mo>(</mo><mn>3</mn><mo>,</mo><mi>K</mi><mo>)</mo></math></span> where <em>K</em> is an algebraic closure of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. For <span><math><mi>G</mi><mo>≅</mo><mtext>PGL</mtext><mo>(</mo><mn>3</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> and for the seven nonsporadic, maximal subgroups <em>G</em> of <span><math><mtext>PGL</mtext><mo>(</mo><mn>3</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, we investigate the (projective, irreducible) plane curves defined over <em>K</em> that are left invariant by <em>G</em>. For each, we compute the minimum degree <span><math><mi>d</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of <em>G</em>-invariant curves, provide a classification of all <em>G</em>-invariant curves of degree <span><math><mi>d</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, and determine the first gap <span><math><mi>ε</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> in the spectrum of the degrees of all <em>G</em>-invariant curves. We show that the curves of degree <span><math><mi>d</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> belong to a pencil depending on <em>G</em>, unless they are uniquely determined by <em>G</em>. For most examples of plane curves left invariant by a large subgroup of <span><math><mtext>PGL</mtext><mo>(</mo><mn>3</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, the whole automorphism group of the curve is linear, i.e., a subgroup of <span><math><mtext>PGL</mtext><mo>(</mo><mn>3</mn><mo>,</mo><mi>K</mi><mo>)</mo></math></span>. Although this appears to be a general behavior, we show that the opposite case can also occur for some irreducible plane curves, that is, the curve has a large group of linear automorphisms, but its full automorphism group is nonlinear.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plane curves with a large linear automorphism group in characteristic p\",\"authors\":\"Herivelto Borges ,&nbsp;Gábor Korchmáros ,&nbsp;Pietro Speziali\",\"doi\":\"10.1016/j.ffa.2024.102402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>G</em> be a subgroup of the three dimensional projective group <span><math><mtext>PGL</mtext><mo>(</mo><mn>3</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> defined over a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> of order <em>q</em>, viewed as a subgroup of <span><math><mtext>PGL</mtext><mo>(</mo><mn>3</mn><mo>,</mo><mi>K</mi><mo>)</mo></math></span> where <em>K</em> is an algebraic closure of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. For <span><math><mi>G</mi><mo>≅</mo><mtext>PGL</mtext><mo>(</mo><mn>3</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> and for the seven nonsporadic, maximal subgroups <em>G</em> of <span><math><mtext>PGL</mtext><mo>(</mo><mn>3</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, we investigate the (projective, irreducible) plane curves defined over <em>K</em> that are left invariant by <em>G</em>. For each, we compute the minimum degree <span><math><mi>d</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of <em>G</em>-invariant curves, provide a classification of all <em>G</em>-invariant curves of degree <span><math><mi>d</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, and determine the first gap <span><math><mi>ε</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> in the spectrum of the degrees of all <em>G</em>-invariant curves. We show that the curves of degree <span><math><mi>d</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> belong to a pencil depending on <em>G</em>, unless they are uniquely determined by <em>G</em>. For most examples of plane curves left invariant by a large subgroup of <span><math><mtext>PGL</mtext><mo>(</mo><mn>3</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, the whole automorphism group of the curve is linear, i.e., a subgroup of <span><math><mtext>PGL</mtext><mo>(</mo><mn>3</mn><mo>,</mo><mi>K</mi><mo>)</mo></math></span>. Although this appears to be a general behavior, we show that the opposite case can also occur for some irreducible plane curves, that is, the curve has a large group of linear automorphisms, but its full automorphism group is nonlinear.</p></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579724000418\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724000418","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 G 是定义在 q 阶有限域 Fq 上的三维射影群 PGL(3,q) 的一个子群,视为 PGL(3,K) 的一个子群,其中 K 是 Fq 的代数闭包。对于 G≅PGL(3,q)和 PGL(3,q)的七个无间隔的最大子群 G,我们研究了定义在 K 上的由 G 左不变的(投影的、不可还原的)平面曲线。对于每条曲线,我们都计算了 G 不变曲线的最小度 d(G),提供了所有度为 d(G) 的 G 不变曲线的分类,并确定了所有 G 不变曲线度谱中的第一缺口 ε(G)。我们证明了阶数为 d(G) 的曲线属于取决于 G 的笔状曲线,除非它们是由 G 唯一决定的。对于大多数由 PGL(3,q) 的一个大子群保持不变的平面曲线,曲线的整个自变群是线性的,即 PGL(3,K) 的一个子群。虽然这似乎是一种普遍现象,但我们证明,对于某些不可还原平面曲线,也可能出现相反的情况,即曲线有一个大的线性自变群,但其整个自变群是非线性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plane curves with a large linear automorphism group in characteristic p

Let G be a subgroup of the three dimensional projective group PGL(3,q) defined over a finite field Fq of order q, viewed as a subgroup of PGL(3,K) where K is an algebraic closure of Fq. For GPGL(3,q) and for the seven nonsporadic, maximal subgroups G of PGL(3,q), we investigate the (projective, irreducible) plane curves defined over K that are left invariant by G. For each, we compute the minimum degree d(G) of G-invariant curves, provide a classification of all G-invariant curves of degree d(G), and determine the first gap ε(G) in the spectrum of the degrees of all G-invariant curves. We show that the curves of degree d(G) belong to a pencil depending on G, unless they are uniquely determined by G. For most examples of plane curves left invariant by a large subgroup of PGL(3,q), the whole automorphism group of the curve is linear, i.e., a subgroup of PGL(3,K). Although this appears to be a general behavior, we show that the opposite case can also occur for some irreducible plane curves, that is, the curve has a large group of linear automorphisms, but its full automorphism group is nonlinear.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信