Haitian Wang, Yi Luo, Mingyu Zhou, Xintong Ren, George Chen
{"title":"加速热老化对高压直流电缆用聚丙烯基半导体屏蔽性能的影响--抗氧化剂的效果","authors":"Haitian Wang, Yi Luo, Mingyu Zhou, Xintong Ren, George Chen","doi":"10.1049/hve2.12415","DOIUrl":null,"url":null,"abstract":"<p>The potential of using eco-friendly thermoplastic polypropylene (PP)-based insulation for high voltage direct current (HVDC) cable has been widely investigated but much less work on the PP-based semiconducting screen (SC). Considering a long service life (>30 years) under high temperature and high electrical stress is required for typical HVDC cables, and investigations on the effect of antioxidant (AO) concentration and thermal oxidative stability, mechanical, and electrical properties of PP-based SCs have been conducted. It has been demonstrated that an appropriate combination and amounts of AOs are critical for achieving high thermal stability and maintaining the mechanical properties of SC after ageing in a harsh environment (150°C, with Cu, in air, 7 days). Although higher amounts of space charges have been observed in SC/PP/SC samples with higher AO concentrations, the impact on space charge behaviours is less after ageing, suggesting that ageing (or operating at high temperature) leads to microstructure evolution in SC and can potentially mitigate space accumulation in PP-based insulating materials.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12415","citationCount":"0","resultStr":"{\"title\":\"Accelerated thermal ageing on performance of polypropylene-based semiconducting screen for high voltage direct current cable applications—Effect of antioxidants\",\"authors\":\"Haitian Wang, Yi Luo, Mingyu Zhou, Xintong Ren, George Chen\",\"doi\":\"10.1049/hve2.12415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The potential of using eco-friendly thermoplastic polypropylene (PP)-based insulation for high voltage direct current (HVDC) cable has been widely investigated but much less work on the PP-based semiconducting screen (SC). Considering a long service life (>30 years) under high temperature and high electrical stress is required for typical HVDC cables, and investigations on the effect of antioxidant (AO) concentration and thermal oxidative stability, mechanical, and electrical properties of PP-based SCs have been conducted. It has been demonstrated that an appropriate combination and amounts of AOs are critical for achieving high thermal stability and maintaining the mechanical properties of SC after ageing in a harsh environment (150°C, with Cu, in air, 7 days). Although higher amounts of space charges have been observed in SC/PP/SC samples with higher AO concentrations, the impact on space charge behaviours is less after ageing, suggesting that ageing (or operating at high temperature) leads to microstructure evolution in SC and can potentially mitigate space accumulation in PP-based insulating materials.</p>\",\"PeriodicalId\":48649,\"journal\":{\"name\":\"High Voltage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12415\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Voltage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12415\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12415","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Accelerated thermal ageing on performance of polypropylene-based semiconducting screen for high voltage direct current cable applications—Effect of antioxidants
The potential of using eco-friendly thermoplastic polypropylene (PP)-based insulation for high voltage direct current (HVDC) cable has been widely investigated but much less work on the PP-based semiconducting screen (SC). Considering a long service life (>30 years) under high temperature and high electrical stress is required for typical HVDC cables, and investigations on the effect of antioxidant (AO) concentration and thermal oxidative stability, mechanical, and electrical properties of PP-based SCs have been conducted. It has been demonstrated that an appropriate combination and amounts of AOs are critical for achieving high thermal stability and maintaining the mechanical properties of SC after ageing in a harsh environment (150°C, with Cu, in air, 7 days). Although higher amounts of space charges have been observed in SC/PP/SC samples with higher AO concentrations, the impact on space charge behaviours is less after ageing, suggesting that ageing (or operating at high temperature) leads to microstructure evolution in SC and can potentially mitigate space accumulation in PP-based insulating materials.
High VoltageEnergy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍:
High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include:
Electrical Insulation
● Outdoor, indoor, solid, liquid and gas insulation
● Transient voltages and overvoltage protection
● Nano-dielectrics and new insulation materials
● Condition monitoring and maintenance
Discharge and plasmas, pulsed power
● Electrical discharge, plasma generation and applications
● Interactions of plasma with surfaces
● Pulsed power science and technology
High-field effects
● Computation, measurements of Intensive Electromagnetic Field
● Electromagnetic compatibility
● Biomedical effects
● Environmental effects and protection
High Voltage Engineering
● Design problems, testing and measuring techniques
● Equipment development and asset management
● Smart Grid, live line working
● AC/DC power electronics
● UHV power transmission
Special Issues. Call for papers:
Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf
Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf