Eric A. Arsenault, Yiliu Li, Birui Yang, Xi Wang, Heonjoon Park, Edoardo Mosconi, Enrico Ronca, Takashi Taniguchi, Kenji Watanabe, Daniel Gamelin, Andrew Millis, Cory R. Dean, Filippo de Angelis, Xiaodong Xu, X. Y. Zhu
{"title":"二维莫伊里极电子晶体","authors":"Eric A. Arsenault, Yiliu Li, Birui Yang, Xi Wang, Heonjoon Park, Edoardo Mosconi, Enrico Ronca, Takashi Taniguchi, Kenji Watanabe, Daniel Gamelin, Andrew Millis, Cory R. Dean, Filippo de Angelis, Xiaodong Xu, X. Y. Zhu","doi":"10.1103/physrevlett.132.126501","DOIUrl":null,"url":null,"abstract":"Two-dimensional moiré materials have emerged as the most versatile platform for realizing quantum phases of electrons. Here, we explore the stability origins of correlated states in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mrow><mi>WSe</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>/</mo><msub><mrow><mi>WS</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math> moiré superlattices. We find that ultrafast electronic excitation leads to partial melting of the Mott states on timescales 5 times longer than predictions from the charge hopping integrals and that the melting rates are thermally activated, with activation energies of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>1</mn><mn>8</mn><mo>±</mo><mn>3</mn></mrow></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>1</mn><mn>3</mn><mo>±</mo><mn>2</mn></mrow><mtext> </mtext><mtext> </mtext><mi>meV</mi></math> for the one- and two-hole Mott states, respectively, suggesting significant electron-phonon coupling. A density functional theory calculation of the one-hole Mott state confirms polaron formation and yields a hole-polaron binding energy of 16 meV. These findings reveal a close interplay of electron-electron and electron-phonon interactions in stabilizing the polaronic Mott insulators at transition metal dichalcogenide moiré interfaces.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"68 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Dimensional Moiré Polaronic Electron Crystals\",\"authors\":\"Eric A. Arsenault, Yiliu Li, Birui Yang, Xi Wang, Heonjoon Park, Edoardo Mosconi, Enrico Ronca, Takashi Taniguchi, Kenji Watanabe, Daniel Gamelin, Andrew Millis, Cory R. Dean, Filippo de Angelis, Xiaodong Xu, X. Y. Zhu\",\"doi\":\"10.1103/physrevlett.132.126501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-dimensional moiré materials have emerged as the most versatile platform for realizing quantum phases of electrons. Here, we explore the stability origins of correlated states in <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mrow><mi>WSe</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>/</mo><msub><mrow><mi>WS</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math> moiré superlattices. We find that ultrafast electronic excitation leads to partial melting of the Mott states on timescales 5 times longer than predictions from the charge hopping integrals and that the melting rates are thermally activated, with activation energies of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>1</mn><mn>8</mn><mo>±</mo><mn>3</mn></mrow></math> and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>1</mn><mn>3</mn><mo>±</mo><mn>2</mn></mrow><mtext> </mtext><mtext> </mtext><mi>meV</mi></math> for the one- and two-hole Mott states, respectively, suggesting significant electron-phonon coupling. A density functional theory calculation of the one-hole Mott state confirms polaron formation and yields a hole-polaron binding energy of 16 meV. These findings reveal a close interplay of electron-electron and electron-phonon interactions in stabilizing the polaronic Mott insulators at transition metal dichalcogenide moiré interfaces.\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevlett.132.126501\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.132.126501","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Two-dimensional moiré materials have emerged as the most versatile platform for realizing quantum phases of electrons. Here, we explore the stability origins of correlated states in moiré superlattices. We find that ultrafast electronic excitation leads to partial melting of the Mott states on timescales 5 times longer than predictions from the charge hopping integrals and that the melting rates are thermally activated, with activation energies of and for the one- and two-hole Mott states, respectively, suggesting significant electron-phonon coupling. A density functional theory calculation of the one-hole Mott state confirms polaron formation and yields a hole-polaron binding energy of 16 meV. These findings reveal a close interplay of electron-electron and electron-phonon interactions in stabilizing the polaronic Mott insulators at transition metal dichalcogenide moiré interfaces.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks