David Hoeller, Nikita Rudin, Dhionis Sako, Marco Hutter
{"title":"ANYmal 跑酷:学习四足机器人的敏捷导航","authors":"David Hoeller, Nikita Rudin, Dhionis Sako, Marco Hutter","doi":"https://www.science.org/doi/10.1126/scirobotics.adi7566","DOIUrl":null,"url":null,"abstract":"Performing agile navigation with four-legged robots is a challenging task because of the highly dynamic motions, contacts with various parts of the robot, and the limited field of view of the perception sensors. Here, we propose a fully learned approach to training such robots and conquer scenarios that are reminiscent of parkour challenges. The method involves training advanced locomotion skills for several types of obstacles, such as walking, jumping, climbing, and crouching, and then using a high-level policy to select and control those skills across the terrain. Thanks to our hierarchical formulation, the navigation policy is aware of the capabilities of each skill, and it will adapt its behavior depending on the scenario at hand. In addition, a perception module was trained to reconstruct obstacles from highly occluded and noisy sensory data and endows the pipeline with scene understanding. Compared with previous attempts, our method can plan a path for challenging scenarios without expert demonstration, offline computation, a priori knowledge of the environment, or taking contacts explicitly into account. Although these modules were trained from simulated data only, our real-world experiments demonstrate successful transfer on hardware, where the robot navigated and crossed consecutive challenging obstacles with speeds of up to 2 meters per second.","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":null,"pages":null},"PeriodicalIF":26.1000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANYmal parkour: Learning agile navigation for quadrupedal robots\",\"authors\":\"David Hoeller, Nikita Rudin, Dhionis Sako, Marco Hutter\",\"doi\":\"https://www.science.org/doi/10.1126/scirobotics.adi7566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performing agile navigation with four-legged robots is a challenging task because of the highly dynamic motions, contacts with various parts of the robot, and the limited field of view of the perception sensors. Here, we propose a fully learned approach to training such robots and conquer scenarios that are reminiscent of parkour challenges. The method involves training advanced locomotion skills for several types of obstacles, such as walking, jumping, climbing, and crouching, and then using a high-level policy to select and control those skills across the terrain. Thanks to our hierarchical formulation, the navigation policy is aware of the capabilities of each skill, and it will adapt its behavior depending on the scenario at hand. In addition, a perception module was trained to reconstruct obstacles from highly occluded and noisy sensory data and endows the pipeline with scene understanding. Compared with previous attempts, our method can plan a path for challenging scenarios without expert demonstration, offline computation, a priori knowledge of the environment, or taking contacts explicitly into account. Although these modules were trained from simulated data only, our real-world experiments demonstrate successful transfer on hardware, where the robot navigated and crossed consecutive challenging obstacles with speeds of up to 2 meters per second.\",\"PeriodicalId\":56029,\"journal\":{\"name\":\"Science Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":26.1000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://www.science.org/doi/10.1126/scirobotics.adi7566\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://www.science.org/doi/10.1126/scirobotics.adi7566","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
ANYmal parkour: Learning agile navigation for quadrupedal robots
Performing agile navigation with four-legged robots is a challenging task because of the highly dynamic motions, contacts with various parts of the robot, and the limited field of view of the perception sensors. Here, we propose a fully learned approach to training such robots and conquer scenarios that are reminiscent of parkour challenges. The method involves training advanced locomotion skills for several types of obstacles, such as walking, jumping, climbing, and crouching, and then using a high-level policy to select and control those skills across the terrain. Thanks to our hierarchical formulation, the navigation policy is aware of the capabilities of each skill, and it will adapt its behavior depending on the scenario at hand. In addition, a perception module was trained to reconstruct obstacles from highly occluded and noisy sensory data and endows the pipeline with scene understanding. Compared with previous attempts, our method can plan a path for challenging scenarios without expert demonstration, offline computation, a priori knowledge of the environment, or taking contacts explicitly into account. Although these modules were trained from simulated data only, our real-world experiments demonstrate successful transfer on hardware, where the robot navigated and crossed consecutive challenging obstacles with speeds of up to 2 meters per second.
期刊介绍:
Science Robotics publishes original, peer-reviewed, science- or engineering-based research articles that advance the field of robotics. The journal also features editor-commissioned Reviews. An international team of academic editors holds Science Robotics articles to the same high-quality standard that is the hallmark of the Science family of journals.
Sub-topics include: actuators, advanced materials, artificial Intelligence, autonomous vehicles, bio-inspired design, exoskeletons, fabrication, field robotics, human-robot interaction, humanoids, industrial robotics, kinematics, machine learning, material science, medical technology, motion planning and control, micro- and nano-robotics, multi-robot control, sensors, service robotics, social and ethical issues, soft robotics, and space, planetary and undersea exploration.