Malcolm S. Itter, Elina Kaarlejärvi, Anna-Liisa Laine, Leena Hamberg, Tiina Tonteri, Jarno Vanhatalo
{"title":"用于群落级预测的贝叶斯联合物种分布模型选择","authors":"Malcolm S. Itter, Elina Kaarlejärvi, Anna-Liisa Laine, Leena Hamberg, Tiina Tonteri, Jarno Vanhatalo","doi":"10.1111/geb.13827","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>Joint species distribution models (JSDMs) are an important tool for predicting ecosystem diversity and function under global change. The growing complexity of modern JSDMs necessitates careful model selection tailored to the challenges of community prediction under novel conditions (i.e., transferable models). Common approaches to evaluate the performance of JSDMs for community-level prediction are based on individual species predictions that do not account for the species correlation structures inherent in JSDMs. Here, we formalize a Bayesian model selection approach that accounts for species correlation structures and apply it to compare the community-level predictive performance of alternative JSDMs across broad environmental gradients emulating transferable applications.</p>\n </section>\n \n <section>\n \n <h3> Innovation</h3>\n \n <p>We connect the evaluation of JSDM predictions to Bayesian model selection theory under which the log score is the preferred performance measure for probabilistic prediction. We define the joint log score for community-level prediction and distinguish it from more commonly applied JSDM evaluation metrics. We then apply the joint community log score to evaluate predictions of 1918 out-of-sample boreal forest understory communities spanning 39 species generated using a novel multinomial JSDM framework that supports alternative species correlation structures: independent, compositional dependence and residual dependence.</p>\n </section>\n \n <section>\n \n <h3> Main conclusions</h3>\n \n <p>The best performing JSDM included all observed environmental variables and compositional dependence modelled using a multinomial likelihood. The addition of flexible residual species correlations improved model predictions only within JSDMs applying a reduced set of environmental variables highlighting potential confounding between unobserved environmental conditions and residual species dependence. The best performing JSDM was consistent across successional and bioclimatic gradients regardless of whether interest was in species- or community-level prediction. Our study demonstrates the utility of the joint community log score to compare the predictive performance of JSDMs and highlights the importance of accounting for species dependence when interest is in community composition under novel conditions.</p>\n </section>\n </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 5","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13827","citationCount":"0","resultStr":"{\"title\":\"Bayesian joint species distribution model selection for community-level prediction\",\"authors\":\"Malcolm S. Itter, Elina Kaarlejärvi, Anna-Liisa Laine, Leena Hamberg, Tiina Tonteri, Jarno Vanhatalo\",\"doi\":\"10.1111/geb.13827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aim</h3>\\n \\n <p>Joint species distribution models (JSDMs) are an important tool for predicting ecosystem diversity and function under global change. The growing complexity of modern JSDMs necessitates careful model selection tailored to the challenges of community prediction under novel conditions (i.e., transferable models). Common approaches to evaluate the performance of JSDMs for community-level prediction are based on individual species predictions that do not account for the species correlation structures inherent in JSDMs. Here, we formalize a Bayesian model selection approach that accounts for species correlation structures and apply it to compare the community-level predictive performance of alternative JSDMs across broad environmental gradients emulating transferable applications.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Innovation</h3>\\n \\n <p>We connect the evaluation of JSDM predictions to Bayesian model selection theory under which the log score is the preferred performance measure for probabilistic prediction. We define the joint log score for community-level prediction and distinguish it from more commonly applied JSDM evaluation metrics. We then apply the joint community log score to evaluate predictions of 1918 out-of-sample boreal forest understory communities spanning 39 species generated using a novel multinomial JSDM framework that supports alternative species correlation structures: independent, compositional dependence and residual dependence.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Main conclusions</h3>\\n \\n <p>The best performing JSDM included all observed environmental variables and compositional dependence modelled using a multinomial likelihood. The addition of flexible residual species correlations improved model predictions only within JSDMs applying a reduced set of environmental variables highlighting potential confounding between unobserved environmental conditions and residual species dependence. The best performing JSDM was consistent across successional and bioclimatic gradients regardless of whether interest was in species- or community-level prediction. Our study demonstrates the utility of the joint community log score to compare the predictive performance of JSDMs and highlights the importance of accounting for species dependence when interest is in community composition under novel conditions.</p>\\n </section>\\n </div>\",\"PeriodicalId\":176,\"journal\":{\"name\":\"Global Ecology and Biogeography\",\"volume\":\"33 5\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13827\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Ecology and Biogeography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/geb.13827\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Ecology and Biogeography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/geb.13827","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Bayesian joint species distribution model selection for community-level prediction
Aim
Joint species distribution models (JSDMs) are an important tool for predicting ecosystem diversity and function under global change. The growing complexity of modern JSDMs necessitates careful model selection tailored to the challenges of community prediction under novel conditions (i.e., transferable models). Common approaches to evaluate the performance of JSDMs for community-level prediction are based on individual species predictions that do not account for the species correlation structures inherent in JSDMs. Here, we formalize a Bayesian model selection approach that accounts for species correlation structures and apply it to compare the community-level predictive performance of alternative JSDMs across broad environmental gradients emulating transferable applications.
Innovation
We connect the evaluation of JSDM predictions to Bayesian model selection theory under which the log score is the preferred performance measure for probabilistic prediction. We define the joint log score for community-level prediction and distinguish it from more commonly applied JSDM evaluation metrics. We then apply the joint community log score to evaluate predictions of 1918 out-of-sample boreal forest understory communities spanning 39 species generated using a novel multinomial JSDM framework that supports alternative species correlation structures: independent, compositional dependence and residual dependence.
Main conclusions
The best performing JSDM included all observed environmental variables and compositional dependence modelled using a multinomial likelihood. The addition of flexible residual species correlations improved model predictions only within JSDMs applying a reduced set of environmental variables highlighting potential confounding between unobserved environmental conditions and residual species dependence. The best performing JSDM was consistent across successional and bioclimatic gradients regardless of whether interest was in species- or community-level prediction. Our study demonstrates the utility of the joint community log score to compare the predictive performance of JSDMs and highlights the importance of accounting for species dependence when interest is in community composition under novel conditions.
期刊介绍:
Global Ecology and Biogeography (GEB) welcomes papers that investigate broad-scale (in space, time and/or taxonomy), general patterns in the organization of ecological systems and assemblages, and the processes that underlie them. In particular, GEB welcomes studies that use macroecological methods, comparative analyses, meta-analyses, reviews, spatial analyses and modelling to arrive at general, conceptual conclusions. Studies in GEB need not be global in spatial extent, but the conclusions and implications of the study must be relevant to ecologists and biogeographers globally, rather than being limited to local areas, or specific taxa. Similarly, GEB is not limited to spatial studies; we are equally interested in the general patterns of nature through time, among taxa (e.g., body sizes, dispersal abilities), through the course of evolution, etc. Further, GEB welcomes papers that investigate general impacts of human activities on ecological systems in accordance with the above criteria.