从高密度机载激光雷达点云估算木材质量属性

IF 3.8 1区 农林科学 Q1 FORESTRY
Nicolas Cattaneo, Stefano Puliti, Carolin Fischer, Rasmus Astrup
{"title":"从高密度机载激光雷达点云估算木材质量属性","authors":"Nicolas Cattaneo,&nbsp;Stefano Puliti,&nbsp;Carolin Fischer,&nbsp;Rasmus Astrup","doi":"10.1016/j.fecs.2024.100184","DOIUrl":null,"url":null,"abstract":"<div><p>Mapping individual tree quality parameters from high-density LiDAR point clouds is an important step towards improved forest inventories. We present a novel machine learning-based workflow that uses individual tree point clouds from drone laser scanning to predict wood quality indicators in standing trees. Unlike object reconstruction methods, our approach is based on simple metrics computed on vertical slices that summarize information on point distances, angles, and geometric attributes of the space between and around the points. Our models use these slice metrics as predictors and achieve high accuracy for predicting the diameter of the largest branch per log (DLBs) and stem diameter at different heights (DS) from survey-grade drone laser scans. We show that our models are also robust and accurate when tested on suboptimal versions of the data generated by reductions in the number of points or emulations of suboptimal single-tree segmentation scenarios. Our approach provides a simple, clear, and scalable solution that can be adapted to different situations both for research and more operational mapping.</p></div>","PeriodicalId":54270,"journal":{"name":"Forest Ecosystems","volume":"11 ","pages":"Article 100184"},"PeriodicalIF":3.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2197562024000204/pdfft?md5=37b85da963557658a2fb976ab5945f29&pid=1-s2.0-S2197562024000204-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Estimating wood quality attributes from dense airborne LiDAR point clouds\",\"authors\":\"Nicolas Cattaneo,&nbsp;Stefano Puliti,&nbsp;Carolin Fischer,&nbsp;Rasmus Astrup\",\"doi\":\"10.1016/j.fecs.2024.100184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mapping individual tree quality parameters from high-density LiDAR point clouds is an important step towards improved forest inventories. We present a novel machine learning-based workflow that uses individual tree point clouds from drone laser scanning to predict wood quality indicators in standing trees. Unlike object reconstruction methods, our approach is based on simple metrics computed on vertical slices that summarize information on point distances, angles, and geometric attributes of the space between and around the points. Our models use these slice metrics as predictors and achieve high accuracy for predicting the diameter of the largest branch per log (DLBs) and stem diameter at different heights (DS) from survey-grade drone laser scans. We show that our models are also robust and accurate when tested on suboptimal versions of the data generated by reductions in the number of points or emulations of suboptimal single-tree segmentation scenarios. Our approach provides a simple, clear, and scalable solution that can be adapted to different situations both for research and more operational mapping.</p></div>\",\"PeriodicalId\":54270,\"journal\":{\"name\":\"Forest Ecosystems\",\"volume\":\"11 \",\"pages\":\"Article 100184\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2197562024000204/pdfft?md5=37b85da963557658a2fb976ab5945f29&pid=1-s2.0-S2197562024000204-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forest Ecosystems\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2197562024000204\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecosystems","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2197562024000204","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

从高密度激光雷达点云中绘制单棵树木的质量参数是改进森林资源调查的重要一步。我们提出了一种新颖的基于机器学习的工作流程,利用无人机激光扫描的单个树木点云来预测立木的木材质量指标。与对象重建方法不同,我们的方法基于垂直切片上计算的简单度量,这些切片汇总了点间距、角度以及点间和点周围空间的几何属性等信息。我们的模型使用这些切片指标作为预测因子,并能从勘测级无人机激光扫描结果中高精度地预测每根原木最大树枝的直径(DLBs)和不同高度的茎干直径(DS)。我们的研究表明,在通过减少点数或模拟次优单树分割方案生成的次优版本数据上进行测试时,我们的模型也是稳健而准确的。我们的方法提供了一个简单、清晰和可扩展的解决方案,可适用于研究和更多业务制图的不同情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating wood quality attributes from dense airborne LiDAR point clouds

Mapping individual tree quality parameters from high-density LiDAR point clouds is an important step towards improved forest inventories. We present a novel machine learning-based workflow that uses individual tree point clouds from drone laser scanning to predict wood quality indicators in standing trees. Unlike object reconstruction methods, our approach is based on simple metrics computed on vertical slices that summarize information on point distances, angles, and geometric attributes of the space between and around the points. Our models use these slice metrics as predictors and achieve high accuracy for predicting the diameter of the largest branch per log (DLBs) and stem diameter at different heights (DS) from survey-grade drone laser scans. We show that our models are also robust and accurate when tested on suboptimal versions of the data generated by reductions in the number of points or emulations of suboptimal single-tree segmentation scenarios. Our approach provides a simple, clear, and scalable solution that can be adapted to different situations both for research and more operational mapping.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forest Ecosystems
Forest Ecosystems Environmental Science-Nature and Landscape Conservation
CiteScore
7.10
自引率
4.90%
发文量
1115
审稿时长
22 days
期刊介绍: Forest Ecosystems is an open access, peer-reviewed journal publishing scientific communications from any discipline that can provide interesting contributions about the structure and dynamics of "natural" and "domesticated" forest ecosystems, and their services to people. The journal welcomes innovative science as well as application oriented work that will enhance understanding of woody plant communities. Very specific studies are welcome if they are part of a thematic series that provides some holistic perspective that is of general interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信