舒伯特多项式的补集

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Neil J.Y. Fan , Peter L. Guo , Nicolas Y. Liu
{"title":"舒伯特多项式的补集","authors":"Neil J.Y. Fan ,&nbsp;Peter L. Guo ,&nbsp;Nicolas Y. Liu","doi":"10.1016/j.aam.2024.102691","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> be the Schubert polynomial for a permutation <em>w</em> of <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span>. For any given composition <em>μ</em>, we say that <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>μ</mi></mrow></msup><msub><mrow><mi>S</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> is the complement of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> with respect to <em>μ</em>. When each part of <em>μ</em> is equal to <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span>, Huh, Matherne, Mészáros and St. Dizier proved that the normalization of <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>μ</mi></mrow></msup><msub><mrow><mi>S</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> is a Lorentzian polynomial. They further conjectured that the normalization of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is Lorentzian. It can be shown that if there exists a composition <em>μ</em> such that <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>μ</mi></mrow></msup><msub><mrow><mi>S</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> is a Schubert polynomial, then the normalization of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> will be Lorentzian. This motivates us to investigate the problem of when <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>μ</mi></mrow></msup><msub><mrow><mi>S</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> is a Schubert polynomial. We show that if <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>μ</mi></mrow></msup><msub><mrow><mi>S</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> is a Schubert polynomial, then <em>μ</em> must be a partition. We also consider the case when <em>μ</em> is the staircase partition <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>)</mo></math></span>, and obtain that <span><math><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>δ</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msup><msub><mrow><mi>S</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> is a Schubert polynomial if and only if <em>w</em> avoids the patterns 132 and 312. A conjectured characterization of when <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>μ</mi></mrow></msup><msub><mrow><mi>S</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> is a Schubert polynomial is proposed.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complements of Schubert polynomials\",\"authors\":\"Neil J.Y. Fan ,&nbsp;Peter L. Guo ,&nbsp;Nicolas Y. Liu\",\"doi\":\"10.1016/j.aam.2024.102691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> be the Schubert polynomial for a permutation <em>w</em> of <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span>. For any given composition <em>μ</em>, we say that <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>μ</mi></mrow></msup><msub><mrow><mi>S</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> is the complement of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> with respect to <em>μ</em>. When each part of <em>μ</em> is equal to <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span>, Huh, Matherne, Mészáros and St. Dizier proved that the normalization of <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>μ</mi></mrow></msup><msub><mrow><mi>S</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> is a Lorentzian polynomial. They further conjectured that the normalization of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is Lorentzian. It can be shown that if there exists a composition <em>μ</em> such that <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>μ</mi></mrow></msup><msub><mrow><mi>S</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> is a Schubert polynomial, then the normalization of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> will be Lorentzian. This motivates us to investigate the problem of when <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>μ</mi></mrow></msup><msub><mrow><mi>S</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> is a Schubert polynomial. We show that if <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>μ</mi></mrow></msup><msub><mrow><mi>S</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> is a Schubert polynomial, then <em>μ</em> must be a partition. We also consider the case when <em>μ</em> is the staircase partition <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>)</mo></math></span>, and obtain that <span><math><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>δ</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msup><msub><mrow><mi>S</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> is a Schubert polynomial if and only if <em>w</em> avoids the patterns 132 and 312. A conjectured characterization of when <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>μ</mi></mrow></msup><msub><mrow><mi>S</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> is a Schubert polynomial is proposed.</p></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885824000228\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824000228","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设 Sw(x) 是{1,2,...,n}的置换 w 的舒伯特多项式。对于任何给定的组成 μ,我们说 xμSw(x-1) 是 Sw(x) 关于 μ 的补码。当 μ 的每一部分都等于 n-1 时,Huh、Matherne、Mészáros 和 St. Dizier 证明了 xμSw(x-1) 的归一化是一个洛伦兹多项式。他们进一步猜想,Sw(x) 的归一化是洛伦兹多项式。可以证明,如果存在一个组成 μ,使得 xμSw(x-1) 是舒伯特多项式,那么 Sw(x) 的归一化将是洛伦兹多项式。这促使我们研究何时 xμSw(x-1) 是舒伯特多项式的问题。我们证明,如果 xμSw(x-1) 是舒伯特多项式,那么 μ 一定是一个分部。我们还考虑了 μ 是阶梯分割 δn=(n-1,...,1,0) 的情况,并得出当且仅当 w 避开了 132 和 312 图样时,xδnSw(x-1) 是舒伯特多项式。本文提出了一个关于 xμSw(x-1) 何时是舒伯特多项式的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complements of Schubert polynomials

Let Sw(x) be the Schubert polynomial for a permutation w of {1,2,,n}. For any given composition μ, we say that xμSw(x1) is the complement of Sw(x) with respect to μ. When each part of μ is equal to n1, Huh, Matherne, Mészáros and St. Dizier proved that the normalization of xμSw(x1) is a Lorentzian polynomial. They further conjectured that the normalization of Sw(x) is Lorentzian. It can be shown that if there exists a composition μ such that xμSw(x1) is a Schubert polynomial, then the normalization of Sw(x) will be Lorentzian. This motivates us to investigate the problem of when xμSw(x1) is a Schubert polynomial. We show that if xμSw(x1) is a Schubert polynomial, then μ must be a partition. We also consider the case when μ is the staircase partition δn=(n1,,1,0), and obtain that xδnSw(x1) is a Schubert polynomial if and only if w avoids the patterns 132 and 312. A conjectured characterization of when xμSw(x1) is a Schubert polynomial is proposed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信