{"title":"有效区分局部有限图中的所有缠结","authors":"Raphael W. Jacobs, Paul Knappe","doi":"10.1016/j.jctb.2024.03.004","DOIUrl":null,"url":null,"abstract":"<div><p>While finite graphs have tree-decompositions that efficiently distinguish all their tangles, locally finite graphs with thick ends need not have such tree-decompositions. We show that every locally finite graph without thick ends admits such a tree-decomposition, in fact a canonical one. Our proof exhibits a thick end at any obstruction to the existence of such tree-decompositions and builds on new methods for the analysis of the limit behaviour of strictly increasing sequences of separations.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"167 ","pages":"Pages 189-214"},"PeriodicalIF":1.2000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000224/pdfft?md5=eb127aa3ba243eafd76779abff8b1e9d&pid=1-s2.0-S0095895624000224-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Efficiently distinguishing all tangles in locally finite graphs\",\"authors\":\"Raphael W. Jacobs, Paul Knappe\",\"doi\":\"10.1016/j.jctb.2024.03.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>While finite graphs have tree-decompositions that efficiently distinguish all their tangles, locally finite graphs with thick ends need not have such tree-decompositions. We show that every locally finite graph without thick ends admits such a tree-decomposition, in fact a canonical one. Our proof exhibits a thick end at any obstruction to the existence of such tree-decompositions and builds on new methods for the analysis of the limit behaviour of strictly increasing sequences of separations.</p></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"167 \",\"pages\":\"Pages 189-214\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000224/pdfft?md5=eb127aa3ba243eafd76779abff8b1e9d&pid=1-s2.0-S0095895624000224-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000224\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000224","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Efficiently distinguishing all tangles in locally finite graphs
While finite graphs have tree-decompositions that efficiently distinguish all their tangles, locally finite graphs with thick ends need not have such tree-decompositions. We show that every locally finite graph without thick ends admits such a tree-decomposition, in fact a canonical one. Our proof exhibits a thick end at any obstruction to the existence of such tree-decompositions and builds on new methods for the analysis of the limit behaviour of strictly increasing sequences of separations.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.