Linyuan Wang, Xiaofeng Zhang, Congyu Tian, Shu Chen, Yongzhi Deng, Xiangyun Liao, Qiong Wang, Weixin Si
{"title":"PlaqueNet:通过深度学习从冠状动脉计算机断层扫描血管造影中分割冠状动脉斑块。","authors":"Linyuan Wang, Xiaofeng Zhang, Congyu Tian, Shu Chen, Yongzhi Deng, Xiangyun Liao, Qiong Wang, Weixin Si","doi":"10.1186/s42492-024-00157-8","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular disease, primarily caused by atherosclerotic plaque formation, is a significant health concern. The early detection of these plaques is crucial for targeted therapies and reducing the risk of cardiovascular diseases. This study presents PlaqueNet, a solution for segmenting coronary artery plaques from coronary computed tomography angiography (CCTA) images. For feature extraction, the advanced residual net module was utilized, which integrates a deepwise residual optimization module into network branches, enhances feature extraction capabilities, avoiding information loss, and addresses gradient issues during training. To improve segmentation accuracy, a depthwise atrous spatial pyramid pooling based on bicubic efficient channel attention (DASPP-BICECA) module is introduced. The BICECA component amplifies the local feature sensitivity, whereas the DASPP component expands the network's information-gathering scope, resulting in elevated segmentation accuracy. Additionally, BINet, a module for joint network loss evaluation, is proposed. It optimizes the segmentation model without affecting the segmentation results. When combined with the DASPP-BICECA module, BINet enhances overall efficiency. The CCTA segmentation algorithm proposed in this study outperformed the other three comparative algorithms, achieving an intersection over Union of 87.37%, Dice of 93.26%, accuracy of 93.12%, mean intersection over Union of 93.68%, mean Dice of 96.63%, and mean pixel accuracy value of 96.55%.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349722/pdf/","citationCount":"0","resultStr":"{\"title\":\"PlaqueNet: deep learning enabled coronary artery plaque segmentation from coronary computed tomography angiography.\",\"authors\":\"Linyuan Wang, Xiaofeng Zhang, Congyu Tian, Shu Chen, Yongzhi Deng, Xiangyun Liao, Qiong Wang, Weixin Si\",\"doi\":\"10.1186/s42492-024-00157-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiovascular disease, primarily caused by atherosclerotic plaque formation, is a significant health concern. The early detection of these plaques is crucial for targeted therapies and reducing the risk of cardiovascular diseases. This study presents PlaqueNet, a solution for segmenting coronary artery plaques from coronary computed tomography angiography (CCTA) images. For feature extraction, the advanced residual net module was utilized, which integrates a deepwise residual optimization module into network branches, enhances feature extraction capabilities, avoiding information loss, and addresses gradient issues during training. To improve segmentation accuracy, a depthwise atrous spatial pyramid pooling based on bicubic efficient channel attention (DASPP-BICECA) module is introduced. The BICECA component amplifies the local feature sensitivity, whereas the DASPP component expands the network's information-gathering scope, resulting in elevated segmentation accuracy. Additionally, BINet, a module for joint network loss evaluation, is proposed. It optimizes the segmentation model without affecting the segmentation results. When combined with the DASPP-BICECA module, BINet enhances overall efficiency. The CCTA segmentation algorithm proposed in this study outperformed the other three comparative algorithms, achieving an intersection over Union of 87.37%, Dice of 93.26%, accuracy of 93.12%, mean intersection over Union of 93.68%, mean Dice of 96.63%, and mean pixel accuracy value of 96.55%.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349722/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s42492-024-00157-8\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42492-024-00157-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
PlaqueNet: deep learning enabled coronary artery plaque segmentation from coronary computed tomography angiography.
Cardiovascular disease, primarily caused by atherosclerotic plaque formation, is a significant health concern. The early detection of these plaques is crucial for targeted therapies and reducing the risk of cardiovascular diseases. This study presents PlaqueNet, a solution for segmenting coronary artery plaques from coronary computed tomography angiography (CCTA) images. For feature extraction, the advanced residual net module was utilized, which integrates a deepwise residual optimization module into network branches, enhances feature extraction capabilities, avoiding information loss, and addresses gradient issues during training. To improve segmentation accuracy, a depthwise atrous spatial pyramid pooling based on bicubic efficient channel attention (DASPP-BICECA) module is introduced. The BICECA component amplifies the local feature sensitivity, whereas the DASPP component expands the network's information-gathering scope, resulting in elevated segmentation accuracy. Additionally, BINet, a module for joint network loss evaluation, is proposed. It optimizes the segmentation model without affecting the segmentation results. When combined with the DASPP-BICECA module, BINet enhances overall efficiency. The CCTA segmentation algorithm proposed in this study outperformed the other three comparative algorithms, achieving an intersection over Union of 87.37%, Dice of 93.26%, accuracy of 93.12%, mean intersection over Union of 93.68%, mean Dice of 96.63%, and mean pixel accuracy value of 96.55%.