Carlos Daniel Carrasco, Brett Bahle, Aaron Matthew Simmons, Steven J Luck
{"title":"使用多变量模式分析提高事件相关电位分析的效应大小。","authors":"Carlos Daniel Carrasco, Brett Bahle, Aaron Matthew Simmons, Steven J Luck","doi":"10.1111/psyp.14570","DOIUrl":null,"url":null,"abstract":"<p><p>Multivariate pattern analysis (MVPA) approaches can be applied to the topographic distribution of event-related potential (ERP) signals to \"decode\" subtly different stimulus classes, such as different faces or different orientations. These approaches are extremely sensitive, and it seems possible that they could also be used to increase effect sizes and statistical power in traditional paradigms that ask whether an ERP component differs in amplitude across conditions. To assess this possibility, we leveraged the open-source ERP CORE data set and compared the effect sizes resulting from conventional univariate analyses of mean amplitude with two MVPA approaches (support vector machine decoding and the cross-validated Mahalanobis distance, both of which are easy to compute using open-source software). We assessed these approaches across seven widely studied ERP components (N170, N400, N2pc, P3b, lateral readiness potential, error related negativity, and mismatch negativity). Across all components, we found that multivariate approaches yielded effect sizes that were as large or larger than the effect sizes produced by univariate approaches. These results indicate that researchers could obtain larger effect sizes, and therefore greater statistical power, by using multivariate analysis of topographic voltage patterns instead of traditional univariate analyses in many ERP studies.</p>","PeriodicalId":20913,"journal":{"name":"Psychophysiology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11153042/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using multivariate pattern analysis to increase effect sizes for event-related potential analyses.\",\"authors\":\"Carlos Daniel Carrasco, Brett Bahle, Aaron Matthew Simmons, Steven J Luck\",\"doi\":\"10.1111/psyp.14570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multivariate pattern analysis (MVPA) approaches can be applied to the topographic distribution of event-related potential (ERP) signals to \\\"decode\\\" subtly different stimulus classes, such as different faces or different orientations. These approaches are extremely sensitive, and it seems possible that they could also be used to increase effect sizes and statistical power in traditional paradigms that ask whether an ERP component differs in amplitude across conditions. To assess this possibility, we leveraged the open-source ERP CORE data set and compared the effect sizes resulting from conventional univariate analyses of mean amplitude with two MVPA approaches (support vector machine decoding and the cross-validated Mahalanobis distance, both of which are easy to compute using open-source software). We assessed these approaches across seven widely studied ERP components (N170, N400, N2pc, P3b, lateral readiness potential, error related negativity, and mismatch negativity). Across all components, we found that multivariate approaches yielded effect sizes that were as large or larger than the effect sizes produced by univariate approaches. These results indicate that researchers could obtain larger effect sizes, and therefore greater statistical power, by using multivariate analysis of topographic voltage patterns instead of traditional univariate analyses in many ERP studies.</p>\",\"PeriodicalId\":20913,\"journal\":{\"name\":\"Psychophysiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11153042/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychophysiology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1111/psyp.14570\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychophysiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/psyp.14570","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Using multivariate pattern analysis to increase effect sizes for event-related potential analyses.
Multivariate pattern analysis (MVPA) approaches can be applied to the topographic distribution of event-related potential (ERP) signals to "decode" subtly different stimulus classes, such as different faces or different orientations. These approaches are extremely sensitive, and it seems possible that they could also be used to increase effect sizes and statistical power in traditional paradigms that ask whether an ERP component differs in amplitude across conditions. To assess this possibility, we leveraged the open-source ERP CORE data set and compared the effect sizes resulting from conventional univariate analyses of mean amplitude with two MVPA approaches (support vector machine decoding and the cross-validated Mahalanobis distance, both of which are easy to compute using open-source software). We assessed these approaches across seven widely studied ERP components (N170, N400, N2pc, P3b, lateral readiness potential, error related negativity, and mismatch negativity). Across all components, we found that multivariate approaches yielded effect sizes that were as large or larger than the effect sizes produced by univariate approaches. These results indicate that researchers could obtain larger effect sizes, and therefore greater statistical power, by using multivariate analysis of topographic voltage patterns instead of traditional univariate analyses in many ERP studies.
期刊介绍:
Founded in 1964, Psychophysiology is the most established journal in the world specifically dedicated to the dissemination of psychophysiological science. The journal continues to play a key role in advancing human neuroscience in its many forms and methodologies (including central and peripheral measures), covering research on the interrelationships between the physiological and psychological aspects of brain and behavior. Typically, studies published in Psychophysiology include psychological independent variables and noninvasive physiological dependent variables (hemodynamic, optical, and electromagnetic brain imaging and/or peripheral measures such as respiratory sinus arrhythmia, electromyography, pupillography, and many others). The majority of studies published in the journal involve human participants, but work using animal models of such phenomena is occasionally published. Psychophysiology welcomes submissions on new theoretical, empirical, and methodological advances in: cognitive, affective, clinical and social neuroscience, psychopathology and psychiatry, health science and behavioral medicine, and biomedical engineering. The journal publishes theoretical papers, evaluative reviews of literature, empirical papers, and methodological papers, with submissions welcome from scientists in any fields mentioned above.