原发性进行性失语症的临床放射学和神经病理学评估。

IF 8.7 1区 医学 Q1 CLINICAL NEUROLOGY
Dror Shir, Nick Corriveau-Lecavalier, Camilo Bermudez Noguera, Leland Barnard, Nha Trang Thu Pham, Hugo Botha, Joseph R Duffy, Heather M Clark, Rene L Utianski, David S Knopman, Ronald C Petersen, Bradley F Boeve, Melissa E Murray, Aivi T Nguyen, R Ross Reichard, Dennis W Dickson, Gregory S Day, Walter K Kremers, Neill R Graff-Radford, David T Jones, Mary M Machulda, Julie A Fields, Jennifer L Whitwell, Keith A Josephs, Jonathan Graff-Radford
{"title":"原发性进行性失语症的临床放射学和神经病理学评估。","authors":"Dror Shir, Nick Corriveau-Lecavalier, Camilo Bermudez Noguera, Leland Barnard, Nha Trang Thu Pham, Hugo Botha, Joseph R Duffy, Heather M Clark, Rene L Utianski, David S Knopman, Ronald C Petersen, Bradley F Boeve, Melissa E Murray, Aivi T Nguyen, R Ross Reichard, Dennis W Dickson, Gregory S Day, Walter K Kremers, Neill R Graff-Radford, David T Jones, Mary M Machulda, Julie A Fields, Jennifer L Whitwell, Keith A Josephs, Jonathan Graff-Radford","doi":"10.1136/jnnp-2023-332862","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Primary progressive aphasia (PPA) defines a group of neurodegenerative disorders characterised by language decline. Three PPA variants correlate with distinct underlying pathologies: semantic variant PPA (svPPA) with transactive response DNA-binding protein of 43 kD (TDP-43) proteinopathy, agrammatic variant PPA (agPPA) with tau deposition and logopenic variant PPA (lvPPA) with Alzheimer's disease (AD). Our objectives were to differentiate PPA variants using clinical and neuroimaging features, assess progression and evaluate structural MRI and a novel 18-F fluorodeoxyglucose positron emission tomography (FDG-PET) image decomposition machine learning algorithm for neuropathology prediction.</p><p><strong>Methods: </strong>We analysed 82 autopsied patients diagnosed with PPA from 1998 to 2022. Clinical histories, language characteristics, neuropsychological results and brain imaging were reviewed. A machine learning framework using a <i>k</i>-nearest neighbours classifier assessed FDG-PET scans from 45 patients compared with a large reference database.</p><p><strong>Results: </strong>PPA variant distribution: 35 lvPPA (80% AD), 28 agPPA (89% tauopathy) and 18 svPPA (72% frontotemporal lobar degeneration-TAR DNA-binding protein (FTLD-TDP)). Apraxia of speech was associated with 4R-tauopathy in agPPA, while pure agrammatic PPA without apraxia was linked to 3R-tauopathy. Longitudinal data revealed language dysfunction remained the predominant deficit for patients with lvPPA, agPPA evolved to corticobasal or progressive supranuclear palsy syndrome (64%) and svPPA progressed to behavioural variant frontotemporal dementia (44%). agPPA-4R-tauopathy exhibited limited pre-supplementary motor area atrophy, lvPPA-AD displayed temporal atrophy extending to the superior temporal sulcus and svPPA-FTLD-TDP had severe temporal pole atrophy. The FDG-PET-based machine learning algorithm accurately predicted clinical diagnoses and underlying pathologies.</p><p><strong>Conclusions: </strong>Distinguishing 3R-taupathy and 4R-tauopathy in agPPA may rely on apraxia of speech presence. Additional linguistic and clinical features can aid neuropathology prediction. Our data-driven brain metabolism decomposition approach effectively predicts underlying neuropathology.</p>","PeriodicalId":16418,"journal":{"name":"Journal of Neurology, Neurosurgery, and Psychiatry","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11330364/pdf/","citationCount":"0","resultStr":"{\"title\":\"Clinicoradiological and neuropathological evaluation of primary progressive aphasia.\",\"authors\":\"Dror Shir, Nick Corriveau-Lecavalier, Camilo Bermudez Noguera, Leland Barnard, Nha Trang Thu Pham, Hugo Botha, Joseph R Duffy, Heather M Clark, Rene L Utianski, David S Knopman, Ronald C Petersen, Bradley F Boeve, Melissa E Murray, Aivi T Nguyen, R Ross Reichard, Dennis W Dickson, Gregory S Day, Walter K Kremers, Neill R Graff-Radford, David T Jones, Mary M Machulda, Julie A Fields, Jennifer L Whitwell, Keith A Josephs, Jonathan Graff-Radford\",\"doi\":\"10.1136/jnnp-2023-332862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Primary progressive aphasia (PPA) defines a group of neurodegenerative disorders characterised by language decline. Three PPA variants correlate with distinct underlying pathologies: semantic variant PPA (svPPA) with transactive response DNA-binding protein of 43 kD (TDP-43) proteinopathy, agrammatic variant PPA (agPPA) with tau deposition and logopenic variant PPA (lvPPA) with Alzheimer's disease (AD). Our objectives were to differentiate PPA variants using clinical and neuroimaging features, assess progression and evaluate structural MRI and a novel 18-F fluorodeoxyglucose positron emission tomography (FDG-PET) image decomposition machine learning algorithm for neuropathology prediction.</p><p><strong>Methods: </strong>We analysed 82 autopsied patients diagnosed with PPA from 1998 to 2022. Clinical histories, language characteristics, neuropsychological results and brain imaging were reviewed. A machine learning framework using a <i>k</i>-nearest neighbours classifier assessed FDG-PET scans from 45 patients compared with a large reference database.</p><p><strong>Results: </strong>PPA variant distribution: 35 lvPPA (80% AD), 28 agPPA (89% tauopathy) and 18 svPPA (72% frontotemporal lobar degeneration-TAR DNA-binding protein (FTLD-TDP)). Apraxia of speech was associated with 4R-tauopathy in agPPA, while pure agrammatic PPA without apraxia was linked to 3R-tauopathy. Longitudinal data revealed language dysfunction remained the predominant deficit for patients with lvPPA, agPPA evolved to corticobasal or progressive supranuclear palsy syndrome (64%) and svPPA progressed to behavioural variant frontotemporal dementia (44%). agPPA-4R-tauopathy exhibited limited pre-supplementary motor area atrophy, lvPPA-AD displayed temporal atrophy extending to the superior temporal sulcus and svPPA-FTLD-TDP had severe temporal pole atrophy. The FDG-PET-based machine learning algorithm accurately predicted clinical diagnoses and underlying pathologies.</p><p><strong>Conclusions: </strong>Distinguishing 3R-taupathy and 4R-tauopathy in agPPA may rely on apraxia of speech presence. Additional linguistic and clinical features can aid neuropathology prediction. Our data-driven brain metabolism decomposition approach effectively predicts underlying neuropathology.</p>\",\"PeriodicalId\":16418,\"journal\":{\"name\":\"Journal of Neurology, Neurosurgery, and Psychiatry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11330364/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neurology, Neurosurgery, and Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/jnnp-2023-332862\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurology, Neurosurgery, and Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jnnp-2023-332862","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:原发性进行性失语症(PPA)是一组以语言能力下降为特征的神经退行性疾病。三种 PPA 变体与不同的潜在病理相关:语义变异型 PPA(svPPA)与 43 kD 的转录反应 DNA 结合蛋白(TDP-43)蛋白病变相关,无语义变异型 PPA(agPPA)与 tau 沉积相关,对数开放变异型 PPA(lvPPA)与阿尔茨海默病(AD)相关。我们的目标是利用临床和神经影像学特征区分 PPA 变体,评估进展情况,并评估结构性 MRI 和用于神经病理学预测的新型 18-F 氟脱氧葡萄糖正电子发射断层扫描(FDG-PET)图像分解机器学习算法:我们分析了从 1998 年到 2022 年被诊断为 PPA 的 82 名尸检患者。我们回顾了临床病史、语言特点、神经心理学结果和脑成像。使用k-近邻分类器的机器学习框架评估了45名患者的FDG-PET扫描结果,并与大型参考数据库进行了比较:PPA变异分布:35例lvPPA(80%为AD)、28例agPPA(89%为tauopathy)和18例svPPA(72%为额颞叶变性-TAR DNA结合蛋白(FTLD-TDP))。在 agPPA 中,语言障碍与 4R-tauopathy 有关,而无语言障碍的纯粹语言障碍型 PPA 则与 3R-tauopathy 有关。纵向数据显示,语言功能障碍仍是lvPPA患者的主要缺陷,而agPPA则发展为皮质基底或进行性核上麻痹综合征(64%),svPPA则发展为行为变异性额颞叶痴呆(44%)。agPPA-4R-tauopathy 表现出有限的前补充运动区萎缩,lvPPA-AD 表现出延伸至颞上沟的颞叶萎缩,而 svPPA-FTLD-TDP 则有严重的颞极萎缩。基于FDG-PET的机器学习算法能准确预测临床诊断和潜在病理:结论:区分 agPPA 中的 3R-taupathy 和 4R-taupathy 可能要依靠语言障碍的存在。额外的语言和临床特征有助于神经病理学预测。我们的数据驱动脑代谢分解方法能有效预测潜在的神经病理学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clinicoradiological and neuropathological evaluation of primary progressive aphasia.

Background: Primary progressive aphasia (PPA) defines a group of neurodegenerative disorders characterised by language decline. Three PPA variants correlate with distinct underlying pathologies: semantic variant PPA (svPPA) with transactive response DNA-binding protein of 43 kD (TDP-43) proteinopathy, agrammatic variant PPA (agPPA) with tau deposition and logopenic variant PPA (lvPPA) with Alzheimer's disease (AD). Our objectives were to differentiate PPA variants using clinical and neuroimaging features, assess progression and evaluate structural MRI and a novel 18-F fluorodeoxyglucose positron emission tomography (FDG-PET) image decomposition machine learning algorithm for neuropathology prediction.

Methods: We analysed 82 autopsied patients diagnosed with PPA from 1998 to 2022. Clinical histories, language characteristics, neuropsychological results and brain imaging were reviewed. A machine learning framework using a k-nearest neighbours classifier assessed FDG-PET scans from 45 patients compared with a large reference database.

Results: PPA variant distribution: 35 lvPPA (80% AD), 28 agPPA (89% tauopathy) and 18 svPPA (72% frontotemporal lobar degeneration-TAR DNA-binding protein (FTLD-TDP)). Apraxia of speech was associated with 4R-tauopathy in agPPA, while pure agrammatic PPA without apraxia was linked to 3R-tauopathy. Longitudinal data revealed language dysfunction remained the predominant deficit for patients with lvPPA, agPPA evolved to corticobasal or progressive supranuclear palsy syndrome (64%) and svPPA progressed to behavioural variant frontotemporal dementia (44%). agPPA-4R-tauopathy exhibited limited pre-supplementary motor area atrophy, lvPPA-AD displayed temporal atrophy extending to the superior temporal sulcus and svPPA-FTLD-TDP had severe temporal pole atrophy. The FDG-PET-based machine learning algorithm accurately predicted clinical diagnoses and underlying pathologies.

Conclusions: Distinguishing 3R-taupathy and 4R-tauopathy in agPPA may rely on apraxia of speech presence. Additional linguistic and clinical features can aid neuropathology prediction. Our data-driven brain metabolism decomposition approach effectively predicts underlying neuropathology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.70
自引率
1.80%
发文量
888
审稿时长
6 months
期刊介绍: The Journal of Neurology, Neurosurgery & Psychiatry (JNNP) aspires to publish groundbreaking and cutting-edge research worldwide. Covering the entire spectrum of neurological sciences, the journal focuses on common disorders like stroke, multiple sclerosis, Parkinson’s disease, epilepsy, peripheral neuropathy, subarachnoid haemorrhage, and neuropsychiatry, while also addressing complex challenges such as ALS. With early online publication, regular podcasts, and an extensive archive collection boasting the longest half-life in clinical neuroscience journals, JNNP aims to be a trailblazer in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信