Jiaming Wei, Katherine Chaney, Woo Jin Shim, Heyu Chen, Grace Leonard, Sean O'Brien, Ziyan Liu, Jinlin Jiang, Robert Ulrey
{"title":"低温保存的白细胞提取物可以从可控速率的冷冻箱转移到温度较高的超低温储存器中,而不会影响下游 CAR-T 细胞培养的性能和体外功能。","authors":"Jiaming Wei, Katherine Chaney, Woo Jin Shim, Heyu Chen, Grace Leonard, Sean O'Brien, Ziyan Liu, Jinlin Jiang, Robert Ulrey","doi":"10.1016/j.cryobiol.2024.104889","DOIUrl":null,"url":null,"abstract":"<div><p>Chimeric antigen receptor (CAR) T-cell therapies are increasingly adopted as a commercially available treatment for hematologic and solid tumor cancers. As CAR-T therapies reach more patients globally, the cryopreservation and banking of patients’ leukapheresis materials is becoming imperative to accommodate intra/inter-national shipping logistical delays and provide greater manufacturing flexibility. This study aims to determine the optimal temperature range for transferring cryopreserved leukapheresis materials from two distinct types of controlled rate freezing systems, Liquid Nitrogen (LN2)-based and LN2-free Conduction Cooling-based, to the ultracold LN2 storage freezer (≤−135 °C), and its impact on CAR T-cell production and functionality. Presented findings demonstrate that there is no significant influence on CAR T-cell expansion, differentiation, or downstream in-vitro function when employing a transfer temperature range spanning from −30 °C to −80 °C for the LN2-based controlled rate freezers as well as for conduction cooling controlled rate freezers. Notably, CAR T-cells generated from cryopreserved leukapheresis materials using the conduction cooling controlled rate freezer exhibited suboptimal performance in certain donors at transfer temperatures lower than −60 °C, possibly due to the reduced cooling rate of lower than 1 °C/min and extended dwelling time needed to reach the final temperatures within these systems. This cohort of data suggests that there is a low risk to transfer cryopreserved leukapheresis materials at higher temperatures (between −30 °C and −60 °C) with good functional recovery using either controlled cooling system, and the cryopreserved materials are suitable to use as the starting material for autologous CAR T-cell therapies.</p></div>","PeriodicalId":10897,"journal":{"name":"Cryobiology","volume":"115 ","pages":"Article 104889"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0011224024000440/pdfft?md5=ae91db09b565fed855717452f16af505&pid=1-s2.0-S0011224024000440-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Cryopreserved leukapheresis material can be transferred from controlled rate freezers to ultracold storage at warmer temperatures without affecting downstream CAR-T cell culture performance and in-vitro functionality\",\"authors\":\"Jiaming Wei, Katherine Chaney, Woo Jin Shim, Heyu Chen, Grace Leonard, Sean O'Brien, Ziyan Liu, Jinlin Jiang, Robert Ulrey\",\"doi\":\"10.1016/j.cryobiol.2024.104889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chimeric antigen receptor (CAR) T-cell therapies are increasingly adopted as a commercially available treatment for hematologic and solid tumor cancers. As CAR-T therapies reach more patients globally, the cryopreservation and banking of patients’ leukapheresis materials is becoming imperative to accommodate intra/inter-national shipping logistical delays and provide greater manufacturing flexibility. This study aims to determine the optimal temperature range for transferring cryopreserved leukapheresis materials from two distinct types of controlled rate freezing systems, Liquid Nitrogen (LN2)-based and LN2-free Conduction Cooling-based, to the ultracold LN2 storage freezer (≤−135 °C), and its impact on CAR T-cell production and functionality. Presented findings demonstrate that there is no significant influence on CAR T-cell expansion, differentiation, or downstream in-vitro function when employing a transfer temperature range spanning from −30 °C to −80 °C for the LN2-based controlled rate freezers as well as for conduction cooling controlled rate freezers. Notably, CAR T-cells generated from cryopreserved leukapheresis materials using the conduction cooling controlled rate freezer exhibited suboptimal performance in certain donors at transfer temperatures lower than −60 °C, possibly due to the reduced cooling rate of lower than 1 °C/min and extended dwelling time needed to reach the final temperatures within these systems. This cohort of data suggests that there is a low risk to transfer cryopreserved leukapheresis materials at higher temperatures (between −30 °C and −60 °C) with good functional recovery using either controlled cooling system, and the cryopreserved materials are suitable to use as the starting material for autologous CAR T-cell therapies.</p></div>\",\"PeriodicalId\":10897,\"journal\":{\"name\":\"Cryobiology\",\"volume\":\"115 \",\"pages\":\"Article 104889\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0011224024000440/pdfft?md5=ae91db09b565fed855717452f16af505&pid=1-s2.0-S0011224024000440-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryobiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011224024000440\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryobiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011224024000440","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Cryopreserved leukapheresis material can be transferred from controlled rate freezers to ultracold storage at warmer temperatures without affecting downstream CAR-T cell culture performance and in-vitro functionality
Chimeric antigen receptor (CAR) T-cell therapies are increasingly adopted as a commercially available treatment for hematologic and solid tumor cancers. As CAR-T therapies reach more patients globally, the cryopreservation and banking of patients’ leukapheresis materials is becoming imperative to accommodate intra/inter-national shipping logistical delays and provide greater manufacturing flexibility. This study aims to determine the optimal temperature range for transferring cryopreserved leukapheresis materials from two distinct types of controlled rate freezing systems, Liquid Nitrogen (LN2)-based and LN2-free Conduction Cooling-based, to the ultracold LN2 storage freezer (≤−135 °C), and its impact on CAR T-cell production and functionality. Presented findings demonstrate that there is no significant influence on CAR T-cell expansion, differentiation, or downstream in-vitro function when employing a transfer temperature range spanning from −30 °C to −80 °C for the LN2-based controlled rate freezers as well as for conduction cooling controlled rate freezers. Notably, CAR T-cells generated from cryopreserved leukapheresis materials using the conduction cooling controlled rate freezer exhibited suboptimal performance in certain donors at transfer temperatures lower than −60 °C, possibly due to the reduced cooling rate of lower than 1 °C/min and extended dwelling time needed to reach the final temperatures within these systems. This cohort of data suggests that there is a low risk to transfer cryopreserved leukapheresis materials at higher temperatures (between −30 °C and −60 °C) with good functional recovery using either controlled cooling system, and the cryopreserved materials are suitable to use as the starting material for autologous CAR T-cell therapies.
期刊介绍:
Cryobiology: International Journal of Low Temperature Biology and Medicine publishes research articles on all aspects of low temperature biology and medicine.
Research Areas include:
• Cryoprotective additives and their pharmacological actions
• Cryosurgery
• Freeze-drying
• Freezing
• Frost hardiness in plants
• Hibernation
• Hypothermia
• Medical applications of reduced temperature
• Perfusion of organs
• All pertinent methodologies
Cryobiology is the official journal of the Society for Cryobiology.