具有富 Ir 中熵氧化物外壳的亚 2 纳米 IrRuNiMoCo 高熵合金可促进酸性氧的进化。

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Longping Yao, Fengru Zhang, Shuai Yang, Hui Zhang, Yuze Li, Chenlu Yang, Hui Yang, Qingqing Cheng
{"title":"具有富 Ir 中熵氧化物外壳的亚 2 纳米 IrRuNiMoCo 高熵合金可促进酸性氧的进化。","authors":"Longping Yao,&nbsp;Fengru Zhang,&nbsp;Shuai Yang,&nbsp;Hui Zhang,&nbsp;Yuze Li,&nbsp;Chenlu Yang,&nbsp;Hui Yang,&nbsp;Qingqing Cheng","doi":"10.1002/adma.202314049","DOIUrl":null,"url":null,"abstract":"<p>Ensuring high catalytic activity and durability at low iridium (Ir)usage is still a big challenge for the development of electrocatalysts toward oxygen evolution reaction (OER) in proton exchange membrane water electrolysis (PEMWE). Here, a rapid liquid-reduction combined with surface galvanic replacement strategy is reported to synthesize the sub 2 nm high-entropy alloy (HEA) nanoparticles featured with Ir-rich IrRuNiMo medium-entropy oxide shell (Ir-MEO) and a IrRuCoNiMo HEA core (HEA@Ir-MEO). Advanced spectroscopies reveal that the Ir-rich MEO shell inhibits the severe structural evolution of transition metals upon the OER, thus guaranteeing the structural stability. In situ differential electrochemical mass spectrometry, activation energy analysis and theoretical calculations unveil that the OER on HEA@Ir-MEO follows an adsorbate evolution mechanism pathway, where the energy barrier of rate-determining step is substantially lowered. The optimized catalyst delivers the excellent performance (1.85 V/3.0 A cm<sup>−2</sup>@80 °C), long-term stability (&gt;500 [email protected] Acm<sup>−2</sup>), and low energy consumption (3.98 kWh Nm<sup>−3</sup> H<sub>2</sub> @1.0 A cm<sup>−2</sup>) in PEMWE with low Ir usage of ≈0.4 mg cm<sup>−2</sup>, realizing the dramatical reduction of hydrogen (H<sub>2</sub>) production cost to 0.88 dollar per kg (H<sub>2</sub>).</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"36 25","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sub-2 nm IrRuNiMoCo High-Entropy Alloy with Iridium-Rich Medium-Entropy Oxide Shell to Boost Acidic Oxygen Evolution\",\"authors\":\"Longping Yao,&nbsp;Fengru Zhang,&nbsp;Shuai Yang,&nbsp;Hui Zhang,&nbsp;Yuze Li,&nbsp;Chenlu Yang,&nbsp;Hui Yang,&nbsp;Qingqing Cheng\",\"doi\":\"10.1002/adma.202314049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ensuring high catalytic activity and durability at low iridium (Ir)usage is still a big challenge for the development of electrocatalysts toward oxygen evolution reaction (OER) in proton exchange membrane water electrolysis (PEMWE). Here, a rapid liquid-reduction combined with surface galvanic replacement strategy is reported to synthesize the sub 2 nm high-entropy alloy (HEA) nanoparticles featured with Ir-rich IrRuNiMo medium-entropy oxide shell (Ir-MEO) and a IrRuCoNiMo HEA core (HEA@Ir-MEO). Advanced spectroscopies reveal that the Ir-rich MEO shell inhibits the severe structural evolution of transition metals upon the OER, thus guaranteeing the structural stability. In situ differential electrochemical mass spectrometry, activation energy analysis and theoretical calculations unveil that the OER on HEA@Ir-MEO follows an adsorbate evolution mechanism pathway, where the energy barrier of rate-determining step is substantially lowered. The optimized catalyst delivers the excellent performance (1.85 V/3.0 A cm<sup>−2</sup>@80 °C), long-term stability (&gt;500 [email protected] Acm<sup>−2</sup>), and low energy consumption (3.98 kWh Nm<sup>−3</sup> H<sub>2</sub> @1.0 A cm<sup>−2</sup>) in PEMWE with low Ir usage of ≈0.4 mg cm<sup>−2</sup>, realizing the dramatical reduction of hydrogen (H<sub>2</sub>) production cost to 0.88 dollar per kg (H<sub>2</sub>).</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"36 25\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202314049\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202314049","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在质子交换膜电解水(PEMWE)中进行氧进化反应(OER)的电催化剂开发过程中,如何在低Ir用量下确保高催化活性和耐久性仍然是一个巨大的挑战。本文采用快速液相还原结合表面电化学置换的策略,合成了亚 2 纳米高熵合金(HEA)纳米颗粒,其特征是富含 IrRuNiMo 中熵氧化物外壳(Ir-MEO)和 IrRuCoNiMo HEA 内核(HEA@Ir-MEO),在 10 mA cm-2 条件下具有 243 mV 的低过电位和较高的质量活性(261.5 A gIr-1)。先进的光谱分析显示,富含 Ir 的 MEO 外壳抑制了 OER 时过渡金属的严重结构演变,从而保证了结构的稳定性。原位 DEMS、活化能分析和 DFT 计算揭示了 HEA@Ir-MEO 上的 OER 遵循吸附剂演化机制途径,其中决定速率步骤的能垒大大降低,从而解释了增强的 OER 动力学。将优化后的催化剂组装到 PEM 电解槽中,Ir 用量低至约 0.4 mg cm-2,且性能优异(1.85 V/3.0 A cm-2 °C)、长期稳定(>500 h@1.0 Acm-2)、能耗低(3.98 kWh Nm-3 H2 @1.0 A cm-2),使制氢成本大幅降低至每千克 H2 0.88 美元。本文受版权保护。保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sub-2 nm IrRuNiMoCo High-Entropy Alloy with Iridium-Rich Medium-Entropy Oxide Shell to Boost Acidic Oxygen Evolution

Sub-2 nm IrRuNiMoCo High-Entropy Alloy with Iridium-Rich Medium-Entropy Oxide Shell to Boost Acidic Oxygen Evolution

Ensuring high catalytic activity and durability at low iridium (Ir)usage is still a big challenge for the development of electrocatalysts toward oxygen evolution reaction (OER) in proton exchange membrane water electrolysis (PEMWE). Here, a rapid liquid-reduction combined with surface galvanic replacement strategy is reported to synthesize the sub 2 nm high-entropy alloy (HEA) nanoparticles featured with Ir-rich IrRuNiMo medium-entropy oxide shell (Ir-MEO) and a IrRuCoNiMo HEA core (HEA@Ir-MEO). Advanced spectroscopies reveal that the Ir-rich MEO shell inhibits the severe structural evolution of transition metals upon the OER, thus guaranteeing the structural stability. In situ differential electrochemical mass spectrometry, activation energy analysis and theoretical calculations unveil that the OER on HEA@Ir-MEO follows an adsorbate evolution mechanism pathway, where the energy barrier of rate-determining step is substantially lowered. The optimized catalyst delivers the excellent performance (1.85 V/3.0 A cm−2@80 °C), long-term stability (>500 [email protected] Acm−2), and low energy consumption (3.98 kWh Nm−3 H2 @1.0 A cm−2) in PEMWE with low Ir usage of ≈0.4 mg cm−2, realizing the dramatical reduction of hydrogen (H2) production cost to 0.88 dollar per kg (H2).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信