{"title":"移位 sinc 函数的帧集","authors":"Yurii Belov , Andrei V. Semenov","doi":"10.1016/j.acha.2024.101654","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that frame set <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> for imaginary shift of sinc-function<span><span><span><math><mi>g</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mi>sin</mi><mo></mo><mi>π</mi><mi>b</mi><mo>(</mo><mi>t</mi><mo>−</mo><mi>i</mi><mi>w</mi><mo>)</mo></mrow><mrow><mi>t</mi><mo>−</mo><mi>i</mi><mi>w</mi></mrow></mfrac><mo>,</mo><mspace></mspace><mi>b</mi><mo>,</mo><mi>w</mi><mo>∈</mo><mi>R</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span></span></span> can be described as <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>=</mo><mo>{</mo><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>:</mo><mi>α</mi><mi>β</mi><mo>⩽</mo><mn>1</mn><mo>,</mo><mi>β</mi><mo>⩽</mo><mo>|</mo><mi>b</mi><mo>|</mo><mo>}</mo></math></span>.</p><p>In addition, we prove that <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>=</mo><mo>{</mo><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>:</mo><mi>α</mi><mi>β</mi><mo>⩽</mo><mn>1</mn><mo>}</mo></math></span> for window functions <em>g</em> of the form<span><span><span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>t</mi><mo>−</mo><mi>i</mi><mi>w</mi></mrow></mfrac><mo>(</mo><mn>1</mn><mo>−</mo><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></munderover><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mi>i</mi><msub><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msub><mi>t</mi></mrow></msup><mo>)</mo><mo>,</mo></math></span></span></span> such that <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>⩾</mo><mn>1</mn></mrow></msub><mo>|</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>|</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mo>|</mo><mi>w</mi><msub><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>|</mo></mrow></msup><mo><</mo><mn>1</mn></math></span>, <span><math><mi>w</mi><msub><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msub><mo><</mo><mn>0</mn></math></span>.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"71 ","pages":"Article 101654"},"PeriodicalIF":2.6000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frame set for shifted sinc-function\",\"authors\":\"Yurii Belov , Andrei V. Semenov\",\"doi\":\"10.1016/j.acha.2024.101654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that frame set <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> for imaginary shift of sinc-function<span><span><span><math><mi>g</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mi>sin</mi><mo></mo><mi>π</mi><mi>b</mi><mo>(</mo><mi>t</mi><mo>−</mo><mi>i</mi><mi>w</mi><mo>)</mo></mrow><mrow><mi>t</mi><mo>−</mo><mi>i</mi><mi>w</mi></mrow></mfrac><mo>,</mo><mspace></mspace><mi>b</mi><mo>,</mo><mi>w</mi><mo>∈</mo><mi>R</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span></span></span> can be described as <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>=</mo><mo>{</mo><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>:</mo><mi>α</mi><mi>β</mi><mo>⩽</mo><mn>1</mn><mo>,</mo><mi>β</mi><mo>⩽</mo><mo>|</mo><mi>b</mi><mo>|</mo><mo>}</mo></math></span>.</p><p>In addition, we prove that <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>=</mo><mo>{</mo><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>:</mo><mi>α</mi><mi>β</mi><mo>⩽</mo><mn>1</mn><mo>}</mo></math></span> for window functions <em>g</em> of the form<span><span><span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>t</mi><mo>−</mo><mi>i</mi><mi>w</mi></mrow></mfrac><mo>(</mo><mn>1</mn><mo>−</mo><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></munderover><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mi>i</mi><msub><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msub><mi>t</mi></mrow></msup><mo>)</mo><mo>,</mo></math></span></span></span> such that <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>⩾</mo><mn>1</mn></mrow></msub><mo>|</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>|</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mo>|</mo><mi>w</mi><msub><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>|</mo></mrow></msup><mo><</mo><mn>1</mn></math></span>, <span><math><mi>w</mi><msub><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msub><mo><</mo><mn>0</mn></math></span>.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"71 \",\"pages\":\"Article 101654\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000319\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000319","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
我们证明,sinc 函数g(t)=sinπb(t-iw)t-iw,b,w∈R∖{0}的虚移帧集 Fg 可描述为 Fg={(α,β):αβ⩽1,β⩽|b|}。此外,我们还证明,Fg={(α,β):αβ⩽1}为窗函数 g 的形式1t-iw(1-∑k=1∞ake2πibkt),使得∑k⩾1|ak|e2π|wbk|<1,wbk<0。
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.