带 Haar 窗口的 Gabor 系统框架集

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Xin-Rong Dai , Meng Zhu
{"title":"带 Haar 窗口的 Gabor 系统框架集","authors":"Xin-Rong Dai ,&nbsp;Meng Zhu","doi":"10.1016/j.acha.2024.101655","DOIUrl":null,"url":null,"abstract":"<div><p>We describe the full structure of the frame set for the Gabor system <span><math><mi>G</mi><mo>(</mo><mi>g</mi><mo>;</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>:</mo><mo>=</mo><mo>{</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mn>2</mn><mi>π</mi><mi>i</mi><mi>m</mi><mi>β</mi><mo>⋅</mo></mrow></msup><mi>g</mi><mo>(</mo><mo>⋅</mo><mo>−</mo><mi>n</mi><mi>α</mi><mo>)</mo><mo>:</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>∈</mo><mi>Z</mi><mo>}</mo></math></span> with the window being the Haar function <span><math><mi>g</mi><mo>=</mo><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></msub><mo>+</mo><msub><mrow><mi>χ</mi></mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></msub></math></span>. This is the first compactly supported window function for which the frame set is represented explicitly.</p><p>The strategy of this paper is to introduce the piecewise linear transformation <span><math><mi>M</mi></math></span> on the unit circle, and to provide a complete characterization of structures for its (symmetric) maximal invariant sets. This transformation is related to the famous three gap theorem of Steinhaus which may be of independent interest. Furthermore, a classical criterion on Gabor frames is improved, which allows us to establish a necessary and sufficient condition for the Gabor system <span><math><mi>G</mi><mo>(</mo><mi>g</mi><mo>;</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span> to be a frame, i.e., the symmetric invariant set of the transformation <span><math><mi>M</mi></math></span> is empty.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"71 ","pages":"Article 101655"},"PeriodicalIF":2.6000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frame set for Gabor systems with Haar window\",\"authors\":\"Xin-Rong Dai ,&nbsp;Meng Zhu\",\"doi\":\"10.1016/j.acha.2024.101655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We describe the full structure of the frame set for the Gabor system <span><math><mi>G</mi><mo>(</mo><mi>g</mi><mo>;</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>:</mo><mo>=</mo><mo>{</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mn>2</mn><mi>π</mi><mi>i</mi><mi>m</mi><mi>β</mi><mo>⋅</mo></mrow></msup><mi>g</mi><mo>(</mo><mo>⋅</mo><mo>−</mo><mi>n</mi><mi>α</mi><mo>)</mo><mo>:</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>∈</mo><mi>Z</mi><mo>}</mo></math></span> with the window being the Haar function <span><math><mi>g</mi><mo>=</mo><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></msub><mo>+</mo><msub><mrow><mi>χ</mi></mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></msub></math></span>. This is the first compactly supported window function for which the frame set is represented explicitly.</p><p>The strategy of this paper is to introduce the piecewise linear transformation <span><math><mi>M</mi></math></span> on the unit circle, and to provide a complete characterization of structures for its (symmetric) maximal invariant sets. This transformation is related to the famous three gap theorem of Steinhaus which may be of independent interest. Furthermore, a classical criterion on Gabor frames is improved, which allows us to establish a necessary and sufficient condition for the Gabor system <span><math><mi>G</mi><mo>(</mo><mi>g</mi><mo>;</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span> to be a frame, i.e., the symmetric invariant set of the transformation <span><math><mi>M</mi></math></span> is empty.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"71 \",\"pages\":\"Article 101655\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000320\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000320","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了以 Haar 函数为窗口的 Gabor 系统帧集的完整结构。这是第一个明确表示帧集的紧凑支持窗口函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frame set for Gabor systems with Haar window

We describe the full structure of the frame set for the Gabor system G(g;α,β):={e2πimβg(nα):m,nZ} with the window being the Haar function g=χ[1/2,0)+χ[0,1/2). This is the first compactly supported window function for which the frame set is represented explicitly.

The strategy of this paper is to introduce the piecewise linear transformation M on the unit circle, and to provide a complete characterization of structures for its (symmetric) maximal invariant sets. This transformation is related to the famous three gap theorem of Steinhaus which may be of independent interest. Furthermore, a classical criterion on Gabor frames is improved, which allows us to establish a necessary and sufficient condition for the Gabor system G(g;α,β) to be a frame, i.e., the symmetric invariant set of the transformation M is empty.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信