{"title":"同源和异源异构体蛋白-蛋白关联解释了幼虫的自分泌和异源信息素-细胞相互作用","authors":"Claudio Alimenti , Bill Pedrini , Pierangelo Luporini , Yaohan Jiang , Adriana Vallesi","doi":"10.1016/j.ejop.2024.126075","DOIUrl":null,"url":null,"abstract":"<div><p>In <em>Euplotes</em>, protein pheromones regulate cell reproduction and mating by binding cells in autocrine or heterologous fashion, respectively. Pheromone binding sites (receptors) are identified with membrane-bound pheromone isoforms determined by the same genes specifying the soluble forms, establishing a structural equivalence in each cell type between the two twin proteins. Based on this equivalence, autocrine and heterologous pheromone/receptor interactions were investigated analyzing how native molecules of pheromones E<em>r</em>-1 and E<em>r</em>-13, distinctive of mating compatible <em>E. raikovi</em> cell types, associate into crystals. E<em>r</em>-1 and E<em>r</em>-13 crystals are equally formed by molecules that associate cooperatively into oligomeric chains rigorously taking a mutually opposite orientation, and each burying two interfaces. A minor interface is pheromone-specific, while a major one is common in E<em>r</em>-1 and E<em>r</em>-13 crystals. A close structural inspection of this interface suggests that it may be used by E<em>r</em>-1 and E<em>r</em>-13 to associate into heterodimers, yet inapt to further associate into higher complexes. Pheromone-molecule homo-oligomerization into chains accounts for clustering and internalization of autocrine pheromone/receptor complexes in growing cells, while the heterodimer unsuitability to oligomerize may explain why heterologous pheromone/receptor complexes fail clustering and internalization. Remaining on the cell surface, they are credited with a key role in cell–cell mating adhesion.</p></div>","PeriodicalId":12042,"journal":{"name":"European journal of protistology","volume":"94 ","pages":"Article 126075"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0932473924000257/pdfft?md5=82e08cb8220c05d2e4f00c51e6326a24&pid=1-s2.0-S0932473924000257-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Homo- and hetero-oligomeric protein–protein associations explain autocrine and heterologous pheromone-cell interactions in Euplotes\",\"authors\":\"Claudio Alimenti , Bill Pedrini , Pierangelo Luporini , Yaohan Jiang , Adriana Vallesi\",\"doi\":\"10.1016/j.ejop.2024.126075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In <em>Euplotes</em>, protein pheromones regulate cell reproduction and mating by binding cells in autocrine or heterologous fashion, respectively. Pheromone binding sites (receptors) are identified with membrane-bound pheromone isoforms determined by the same genes specifying the soluble forms, establishing a structural equivalence in each cell type between the two twin proteins. Based on this equivalence, autocrine and heterologous pheromone/receptor interactions were investigated analyzing how native molecules of pheromones E<em>r</em>-1 and E<em>r</em>-13, distinctive of mating compatible <em>E. raikovi</em> cell types, associate into crystals. E<em>r</em>-1 and E<em>r</em>-13 crystals are equally formed by molecules that associate cooperatively into oligomeric chains rigorously taking a mutually opposite orientation, and each burying two interfaces. A minor interface is pheromone-specific, while a major one is common in E<em>r</em>-1 and E<em>r</em>-13 crystals. A close structural inspection of this interface suggests that it may be used by E<em>r</em>-1 and E<em>r</em>-13 to associate into heterodimers, yet inapt to further associate into higher complexes. Pheromone-molecule homo-oligomerization into chains accounts for clustering and internalization of autocrine pheromone/receptor complexes in growing cells, while the heterodimer unsuitability to oligomerize may explain why heterologous pheromone/receptor complexes fail clustering and internalization. Remaining on the cell surface, they are credited with a key role in cell–cell mating adhesion.</p></div>\",\"PeriodicalId\":12042,\"journal\":{\"name\":\"European journal of protistology\",\"volume\":\"94 \",\"pages\":\"Article 126075\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0932473924000257/pdfft?md5=82e08cb8220c05d2e4f00c51e6326a24&pid=1-s2.0-S0932473924000257-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European journal of protistology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0932473924000257\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of protistology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0932473924000257","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Homo- and hetero-oligomeric protein–protein associations explain autocrine and heterologous pheromone-cell interactions in Euplotes
In Euplotes, protein pheromones regulate cell reproduction and mating by binding cells in autocrine or heterologous fashion, respectively. Pheromone binding sites (receptors) are identified with membrane-bound pheromone isoforms determined by the same genes specifying the soluble forms, establishing a structural equivalence in each cell type between the two twin proteins. Based on this equivalence, autocrine and heterologous pheromone/receptor interactions were investigated analyzing how native molecules of pheromones Er-1 and Er-13, distinctive of mating compatible E. raikovi cell types, associate into crystals. Er-1 and Er-13 crystals are equally formed by molecules that associate cooperatively into oligomeric chains rigorously taking a mutually opposite orientation, and each burying two interfaces. A minor interface is pheromone-specific, while a major one is common in Er-1 and Er-13 crystals. A close structural inspection of this interface suggests that it may be used by Er-1 and Er-13 to associate into heterodimers, yet inapt to further associate into higher complexes. Pheromone-molecule homo-oligomerization into chains accounts for clustering and internalization of autocrine pheromone/receptor complexes in growing cells, while the heterodimer unsuitability to oligomerize may explain why heterologous pheromone/receptor complexes fail clustering and internalization. Remaining on the cell surface, they are credited with a key role in cell–cell mating adhesion.
期刊介绍:
Articles deal with protists, unicellular organisms encountered free-living in various habitats or as parasites or used in basic research or applications. The European Journal of Protistology covers topics such as the structure and systematics of protists, their development, ecology, molecular biology and physiology. Beside publishing original articles the journal offers a forum for announcing scientific meetings. Reviews of recently published books are included as well. With its diversity of topics, the European Journal of Protistology is an essential source of information for every active protistologist and for biologists of various fields.