Emily K. Griffin , Kaylie Anne Costa , Dylan Lukacsa , Justin Greenberg , Lauren M. Hall , Bradley T. Furman , Victoria M. Congdon , Trisha Green , Katherine Suchanec , John A. Bowden
{"title":"佛罗里达海草的非目标脂质组学","authors":"Emily K. Griffin , Kaylie Anne Costa , Dylan Lukacsa , Justin Greenberg , Lauren M. Hall , Bradley T. Furman , Victoria M. Congdon , Trisha Green , Katherine Suchanec , John A. Bowden","doi":"10.1016/j.aquabot.2024.103773","DOIUrl":null,"url":null,"abstract":"<div><p>Seagrasses are one of the most productive foundation species in the world and are important for maintaining ecosystem homeostasis. However, seagrasses have experienced a global decline in areal extent, due in part to environmental stressors. Despite ongoing decline, little is known about the lipidome of most seagrass species. Generally, lipidome profiles closely align with phenotypic changes and can be used to evaluate the condition of an individual. In this study, a nontargeted lipidomics approach, utilizing high-performance liquid chromatography tandem mass spectrometry, was used to assess the lipidome of wild seagrasses in Florida. Overall, 399 individual lipid species, comprised of 33 lipid subclasses, were identified across all specimens. The lipid classes with the highest total concentration, accounting for 75% of total identified lipids in all seagrasses were: monogalactosyldiacylglycerols (MGDG), digalactosyldiacylglycerols (DGDG), and sulfoquinovosyl diacylglycerols (SQDG). Here, the lipidomic profiles of wild seagrasses were identified for the first time, a necessary step toward using lipodomics as a tool for prospective assessments of condition. Once regional and species-specific baselines have been mapped, lipodomic surveys could provide new insight into the effects of environmental stressors on seagrass condition and help to augment ongoing efforts to document and understand seagrass ecosystem status and trends.</p></div>","PeriodicalId":8273,"journal":{"name":"Aquatic Botany","volume":"193 ","pages":"Article 103773"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nontargeted lipidomics of Florida seagrasses\",\"authors\":\"Emily K. Griffin , Kaylie Anne Costa , Dylan Lukacsa , Justin Greenberg , Lauren M. Hall , Bradley T. Furman , Victoria M. Congdon , Trisha Green , Katherine Suchanec , John A. Bowden\",\"doi\":\"10.1016/j.aquabot.2024.103773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Seagrasses are one of the most productive foundation species in the world and are important for maintaining ecosystem homeostasis. However, seagrasses have experienced a global decline in areal extent, due in part to environmental stressors. Despite ongoing decline, little is known about the lipidome of most seagrass species. Generally, lipidome profiles closely align with phenotypic changes and can be used to evaluate the condition of an individual. In this study, a nontargeted lipidomics approach, utilizing high-performance liquid chromatography tandem mass spectrometry, was used to assess the lipidome of wild seagrasses in Florida. Overall, 399 individual lipid species, comprised of 33 lipid subclasses, were identified across all specimens. The lipid classes with the highest total concentration, accounting for 75% of total identified lipids in all seagrasses were: monogalactosyldiacylglycerols (MGDG), digalactosyldiacylglycerols (DGDG), and sulfoquinovosyl diacylglycerols (SQDG). Here, the lipidomic profiles of wild seagrasses were identified for the first time, a necessary step toward using lipodomics as a tool for prospective assessments of condition. Once regional and species-specific baselines have been mapped, lipodomic surveys could provide new insight into the effects of environmental stressors on seagrass condition and help to augment ongoing efforts to document and understand seagrass ecosystem status and trends.</p></div>\",\"PeriodicalId\":8273,\"journal\":{\"name\":\"Aquatic Botany\",\"volume\":\"193 \",\"pages\":\"Article 103773\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304377024000251\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304377024000251","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Seagrasses are one of the most productive foundation species in the world and are important for maintaining ecosystem homeostasis. However, seagrasses have experienced a global decline in areal extent, due in part to environmental stressors. Despite ongoing decline, little is known about the lipidome of most seagrass species. Generally, lipidome profiles closely align with phenotypic changes and can be used to evaluate the condition of an individual. In this study, a nontargeted lipidomics approach, utilizing high-performance liquid chromatography tandem mass spectrometry, was used to assess the lipidome of wild seagrasses in Florida. Overall, 399 individual lipid species, comprised of 33 lipid subclasses, were identified across all specimens. The lipid classes with the highest total concentration, accounting for 75% of total identified lipids in all seagrasses were: monogalactosyldiacylglycerols (MGDG), digalactosyldiacylglycerols (DGDG), and sulfoquinovosyl diacylglycerols (SQDG). Here, the lipidomic profiles of wild seagrasses were identified for the first time, a necessary step toward using lipodomics as a tool for prospective assessments of condition. Once regional and species-specific baselines have been mapped, lipodomic surveys could provide new insight into the effects of environmental stressors on seagrass condition and help to augment ongoing efforts to document and understand seagrass ecosystem status and trends.
期刊介绍:
Aquatic Botany offers a platform for papers relevant to a broad international readership on fundamental and applied aspects of marine and freshwater macroscopic plants in a context of ecology or environmental biology. This includes molecular, biochemical and physiological aspects of macroscopic aquatic plants as well as the classification, structure, function, dynamics and ecological interactions in plant-dominated aquatic communities and ecosystems. It is an outlet for papers dealing with research on the consequences of disturbance and stressors (e.g. environmental fluctuations and climate change, pollution, grazing and pathogens), use and management of aquatic plants (plant production and decomposition, commercial harvest, plant control) and the conservation of aquatic plant communities (breeding, transplantation and restoration). Specialized publications on certain rare taxa or papers on aquatic macroscopic plants from under-represented regions in the world can also find their place, subject to editor evaluation. Studies on fungi or microalgae will remain outside the scope of Aquatic Botany.