{"title":"单向有符号图中的循环流动","authors":"Jiaao Li, Reza Naserasr, Zhouningxin Wang, Xuding Zhu","doi":"10.1002/jgt.23092","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the concept of circular <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math>-flow in a mono-directed signed graph <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>G</mi>\n <mo>,</mo>\n <mi>σ</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(G,\\sigma )$</annotation>\n </semantics></math> is introduced. That is a pair <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>D</mi>\n <mo>,</mo>\n <mi>f</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(D,f)$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>D</mi>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math> is an orientation on <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>:</mo>\n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <mo>→</mo>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mo>−</mo>\n <mi>r</mi>\n <mo>,</mo>\n <mi>r</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f:E(G)\\to (-r,r)$</annotation>\n </semantics></math> satisfies that <span></span><math>\n <semantics>\n <mrow>\n <mo>∣</mo>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n <mi>e</mi>\n <mo>)</mo>\n </mrow>\n <mo>∣</mo>\n <mo>∈</mo>\n <mrow>\n <mo>[</mo>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>r</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <mo>]</mo>\n </mrow>\n </mrow>\n <annotation> $| f(e)| \\in [1,r-1]$</annotation>\n </semantics></math> for each positive edge <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n </mrow>\n <annotation> $e$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mo>∣</mo>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n <mi>e</mi>\n <mo>)</mo>\n </mrow>\n <mo>∣</mo>\n <mo>∈</mo>\n <mrow>\n <mo>[</mo>\n <mrow>\n <mn>0</mn>\n <mo>,</mo>\n <mfrac>\n <mi>r</mi>\n <mn>2</mn>\n </mfrac>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <mo>]</mo>\n </mrow>\n <mo>∪</mo>\n <mrow>\n <mo>[</mo>\n <mrow>\n <mfrac>\n <mi>r</mi>\n <mn>2</mn>\n </mfrac>\n <mo>+</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>r</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $| f(e)| \\in [0,\\frac{r}{2}-1]\\cup [\\frac{r}{2}+1,r)$</annotation>\n </semantics></math> for each negative edge <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n </mrow>\n <annotation> $e$</annotation>\n </semantics></math>, and the total in-flow equals the total out-flow at each vertex. This is the dual notion of circular colorings of signed graphs and is distinct from the concept of circular flows in bi-directed graphs associated with signed graphs studied in the literature. We first explore the connection between circular <span></span><math>\n <semantics>\n <mrow>\n <mfrac>\n <mrow>\n <mn>2</mn>\n <mi>k</mi>\n </mrow>\n <mrow>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </mfrac>\n </mrow>\n <annotation> $\\frac{2k}{k-1}$</annotation>\n </semantics></math>-flows and modulo <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-orientations in signed graphs. Then we focus on the upper bounds for the circular flow indices of signed graphs in terms of the edge-connectivity, where the circular flow index of a signed graph is the minimum value <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math> such that it admits a circular <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math>-flow. We prove that every 3-edge-connected signed graph admits a circular 6-flow and every 4-edge-connected signed graph admits a circular 4-flow. More generally, for <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>≥</mo>\n <mn>2</mn>\n </mrow>\n <annotation> $k\\ge 2$</annotation>\n </semantics></math>, we show that every <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>3</mn>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(3k-1)$</annotation>\n </semantics></math>-edge-connected signed graph admits a circular <span></span><math>\n <semantics>\n <mrow>\n <mfrac>\n <mrow>\n <mn>2</mn>\n <mi>k</mi>\n </mrow>\n <mrow>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </mfrac>\n </mrow>\n <annotation> $\\frac{2k}{k-1}$</annotation>\n </semantics></math>-flow, every <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n <mi>k</mi>\n </mrow>\n <annotation> $3k$</annotation>\n </semantics></math>-edge-connected signed graph has a circular <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math>-flow with <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n <mo><</mo>\n <mfrac>\n <mrow>\n <mn>2</mn>\n <mi>k</mi>\n </mrow>\n <mrow>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </mfrac>\n </mrow>\n <annotation> $r\\lt \\frac{2k}{k-1}$</annotation>\n </semantics></math>, and every <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>3</mn>\n <mi>k</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(3k+1)$</annotation>\n </semantics></math>-edge-connected signed graph admits a circular <span></span><math>\n <semantics>\n <mrow>\n <mfrac>\n <mrow>\n <mn>4</mn>\n <mi>k</mi>\n <mo>+</mo>\n <mn>2</mn>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </mfrac>\n </mrow>\n <annotation> $\\frac{4k+2}{2k-1}$</annotation>\n </semantics></math>-flow. Moreover, the <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>6</mn>\n <mi>k</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(6k-2)$</annotation>\n </semantics></math>-edge-connectivity condition is shown to be sufficient for a signed Eulerian graph to admit a circular <span></span><math>\n <semantics>\n <mrow>\n <mfrac>\n <mrow>\n <mn>4</mn>\n <mi>k</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </mfrac>\n </mrow>\n <annotation> $\\frac{4k}{2k-1}$</annotation>\n </semantics></math>-flow, and applying this result to planar graphs, we conclude that every signed bipartite planar graph of negative girth at least <span></span><math>\n <semantics>\n <mrow>\n <mn>6</mn>\n <mi>k</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n <annotation> $6k-2$</annotation>\n </semantics></math> admits a homomorphism to the negative even cycles <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n <mi>k</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${C}_{-2k}$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circular flows in mono-directed signed graphs\",\"authors\":\"Jiaao Li, Reza Naserasr, Zhouningxin Wang, Xuding Zhu\",\"doi\":\"10.1002/jgt.23092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, the concept of circular <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math>-flow in a mono-directed signed graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>G</mi>\\n <mo>,</mo>\\n <mi>σ</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(G,\\\\sigma )$</annotation>\\n </semantics></math> is introduced. That is a pair <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>D</mi>\\n <mo>,</mo>\\n <mi>f</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(D,f)$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>D</mi>\\n </mrow>\\n <annotation> $D$</annotation>\\n </semantics></math> is an orientation on <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>:</mo>\\n <mi>E</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>→</mo>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mo>−</mo>\\n <mi>r</mi>\\n <mo>,</mo>\\n <mi>r</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $f:E(G)\\\\to (-r,r)$</annotation>\\n </semantics></math> satisfies that <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∣</mo>\\n <mi>f</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>e</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>∣</mo>\\n <mo>∈</mo>\\n <mrow>\\n <mo>[</mo>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>r</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <mo>]</mo>\\n </mrow>\\n </mrow>\\n <annotation> $| f(e)| \\\\in [1,r-1]$</annotation>\\n </semantics></math> for each positive edge <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>e</mi>\\n </mrow>\\n <annotation> $e$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∣</mo>\\n <mi>f</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>e</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>∣</mo>\\n <mo>∈</mo>\\n <mrow>\\n <mo>[</mo>\\n <mrow>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mfrac>\\n <mi>r</mi>\\n <mn>2</mn>\\n </mfrac>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <mo>]</mo>\\n </mrow>\\n <mo>∪</mo>\\n <mrow>\\n <mo>[</mo>\\n <mrow>\\n <mfrac>\\n <mi>r</mi>\\n <mn>2</mn>\\n </mfrac>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>r</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $| f(e)| \\\\in [0,\\\\frac{r}{2}-1]\\\\cup [\\\\frac{r}{2}+1,r)$</annotation>\\n </semantics></math> for each negative edge <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>e</mi>\\n </mrow>\\n <annotation> $e$</annotation>\\n </semantics></math>, and the total in-flow equals the total out-flow at each vertex. This is the dual notion of circular colorings of signed graphs and is distinct from the concept of circular flows in bi-directed graphs associated with signed graphs studied in the literature. We first explore the connection between circular <span></span><math>\\n <semantics>\\n <mrow>\\n <mfrac>\\n <mrow>\\n <mn>2</mn>\\n <mi>k</mi>\\n </mrow>\\n <mrow>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </mfrac>\\n </mrow>\\n <annotation> $\\\\frac{2k}{k-1}$</annotation>\\n </semantics></math>-flows and modulo <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-orientations in signed graphs. Then we focus on the upper bounds for the circular flow indices of signed graphs in terms of the edge-connectivity, where the circular flow index of a signed graph is the minimum value <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math> such that it admits a circular <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math>-flow. We prove that every 3-edge-connected signed graph admits a circular 6-flow and every 4-edge-connected signed graph admits a circular 4-flow. More generally, for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>≥</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation> $k\\\\ge 2$</annotation>\\n </semantics></math>, we show that every <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>3</mn>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(3k-1)$</annotation>\\n </semantics></math>-edge-connected signed graph admits a circular <span></span><math>\\n <semantics>\\n <mrow>\\n <mfrac>\\n <mrow>\\n <mn>2</mn>\\n <mi>k</mi>\\n </mrow>\\n <mrow>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </mfrac>\\n </mrow>\\n <annotation> $\\\\frac{2k}{k-1}$</annotation>\\n </semantics></math>-flow, every <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>3</mn>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $3k$</annotation>\\n </semantics></math>-edge-connected signed graph has a circular <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math>-flow with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n <mo><</mo>\\n <mfrac>\\n <mrow>\\n <mn>2</mn>\\n <mi>k</mi>\\n </mrow>\\n <mrow>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </mfrac>\\n </mrow>\\n <annotation> $r\\\\lt \\\\frac{2k}{k-1}$</annotation>\\n </semantics></math>, and every <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>3</mn>\\n <mi>k</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(3k+1)$</annotation>\\n </semantics></math>-edge-connected signed graph admits a circular <span></span><math>\\n <semantics>\\n <mrow>\\n <mfrac>\\n <mrow>\\n <mn>4</mn>\\n <mi>k</mi>\\n <mo>+</mo>\\n <mn>2</mn>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </mfrac>\\n </mrow>\\n <annotation> $\\\\frac{4k+2}{2k-1}$</annotation>\\n </semantics></math>-flow. Moreover, the <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>6</mn>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(6k-2)$</annotation>\\n </semantics></math>-edge-connectivity condition is shown to be sufficient for a signed Eulerian graph to admit a circular <span></span><math>\\n <semantics>\\n <mrow>\\n <mfrac>\\n <mrow>\\n <mn>4</mn>\\n <mi>k</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </mfrac>\\n </mrow>\\n <annotation> $\\\\frac{4k}{2k-1}$</annotation>\\n </semantics></math>-flow, and applying this result to planar graphs, we conclude that every signed bipartite planar graph of negative girth at least <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>6</mn>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation> $6k-2$</annotation>\\n </semantics></math> admits a homomorphism to the negative even cycles <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>C</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>2</mn>\\n <mi>k</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation> ${C}_{-2k}$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, the concept of circular -flow in a mono-directed signed graph is introduced. That is a pair , where is an orientation on and satisfies that for each positive edge and for each negative edge , and the total in-flow equals the total out-flow at each vertex. This is the dual notion of circular colorings of signed graphs and is distinct from the concept of circular flows in bi-directed graphs associated with signed graphs studied in the literature. We first explore the connection between circular -flows and modulo -orientations in signed graphs. Then we focus on the upper bounds for the circular flow indices of signed graphs in terms of the edge-connectivity, where the circular flow index of a signed graph is the minimum value such that it admits a circular -flow. We prove that every 3-edge-connected signed graph admits a circular 6-flow and every 4-edge-connected signed graph admits a circular 4-flow. More generally, for , we show that every -edge-connected signed graph admits a circular -flow, every -edge-connected signed graph has a circular -flow with , and every -edge-connected signed graph admits a circular -flow. Moreover, the -edge-connectivity condition is shown to be sufficient for a signed Eulerian graph to admit a circular -flow, and applying this result to planar graphs, we conclude that every signed bipartite planar graph of negative girth at least admits a homomorphism to the negative even cycles .