单向有符号图中的循环流动

Pub Date : 2024-03-19 DOI:10.1002/jgt.23092
Jiaao Li, Reza Naserasr, Zhouningxin Wang, Xuding Zhu
{"title":"单向有符号图中的循环流动","authors":"Jiaao Li,&nbsp;Reza Naserasr,&nbsp;Zhouningxin Wang,&nbsp;Xuding Zhu","doi":"10.1002/jgt.23092","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the concept of circular <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math>-flow in a mono-directed signed graph <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>G</mi>\n <mo>,</mo>\n <mi>σ</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(G,\\sigma )$</annotation>\n </semantics></math> is introduced. That is a pair <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>D</mi>\n <mo>,</mo>\n <mi>f</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(D,f)$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>D</mi>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math> is an orientation on <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>:</mo>\n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <mo>→</mo>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mo>−</mo>\n <mi>r</mi>\n <mo>,</mo>\n <mi>r</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f:E(G)\\to (-r,r)$</annotation>\n </semantics></math> satisfies that <span></span><math>\n <semantics>\n <mrow>\n <mo>∣</mo>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n <mi>e</mi>\n <mo>)</mo>\n </mrow>\n <mo>∣</mo>\n <mo>∈</mo>\n <mrow>\n <mo>[</mo>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>r</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <mo>]</mo>\n </mrow>\n </mrow>\n <annotation> $| f(e)| \\in [1,r-1]$</annotation>\n </semantics></math> for each positive edge <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n </mrow>\n <annotation> $e$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mo>∣</mo>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n <mi>e</mi>\n <mo>)</mo>\n </mrow>\n <mo>∣</mo>\n <mo>∈</mo>\n <mrow>\n <mo>[</mo>\n <mrow>\n <mn>0</mn>\n <mo>,</mo>\n <mfrac>\n <mi>r</mi>\n <mn>2</mn>\n </mfrac>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <mo>]</mo>\n </mrow>\n <mo>∪</mo>\n <mrow>\n <mo>[</mo>\n <mrow>\n <mfrac>\n <mi>r</mi>\n <mn>2</mn>\n </mfrac>\n <mo>+</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>r</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $| f(e)| \\in [0,\\frac{r}{2}-1]\\cup [\\frac{r}{2}+1,r)$</annotation>\n </semantics></math> for each negative edge <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n </mrow>\n <annotation> $e$</annotation>\n </semantics></math>, and the total in-flow equals the total out-flow at each vertex. This is the dual notion of circular colorings of signed graphs and is distinct from the concept of circular flows in bi-directed graphs associated with signed graphs studied in the literature. We first explore the connection between circular <span></span><math>\n <semantics>\n <mrow>\n <mfrac>\n <mrow>\n <mn>2</mn>\n <mi>k</mi>\n </mrow>\n <mrow>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </mfrac>\n </mrow>\n <annotation> $\\frac{2k}{k-1}$</annotation>\n </semantics></math>-flows and modulo <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-orientations in signed graphs. Then we focus on the upper bounds for the circular flow indices of signed graphs in terms of the edge-connectivity, where the circular flow index of a signed graph is the minimum value <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math> such that it admits a circular <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math>-flow. We prove that every 3-edge-connected signed graph admits a circular 6-flow and every 4-edge-connected signed graph admits a circular 4-flow. More generally, for <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>≥</mo>\n <mn>2</mn>\n </mrow>\n <annotation> $k\\ge 2$</annotation>\n </semantics></math>, we show that every <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>3</mn>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(3k-1)$</annotation>\n </semantics></math>-edge-connected signed graph admits a circular <span></span><math>\n <semantics>\n <mrow>\n <mfrac>\n <mrow>\n <mn>2</mn>\n <mi>k</mi>\n </mrow>\n <mrow>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </mfrac>\n </mrow>\n <annotation> $\\frac{2k}{k-1}$</annotation>\n </semantics></math>-flow, every <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n <mi>k</mi>\n </mrow>\n <annotation> $3k$</annotation>\n </semantics></math>-edge-connected signed graph has a circular <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math>-flow with <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n <mo>&lt;</mo>\n <mfrac>\n <mrow>\n <mn>2</mn>\n <mi>k</mi>\n </mrow>\n <mrow>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </mfrac>\n </mrow>\n <annotation> $r\\lt \\frac{2k}{k-1}$</annotation>\n </semantics></math>, and every <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>3</mn>\n <mi>k</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(3k+1)$</annotation>\n </semantics></math>-edge-connected signed graph admits a circular <span></span><math>\n <semantics>\n <mrow>\n <mfrac>\n <mrow>\n <mn>4</mn>\n <mi>k</mi>\n <mo>+</mo>\n <mn>2</mn>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </mfrac>\n </mrow>\n <annotation> $\\frac{4k+2}{2k-1}$</annotation>\n </semantics></math>-flow. Moreover, the <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>6</mn>\n <mi>k</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(6k-2)$</annotation>\n </semantics></math>-edge-connectivity condition is shown to be sufficient for a signed Eulerian graph to admit a circular <span></span><math>\n <semantics>\n <mrow>\n <mfrac>\n <mrow>\n <mn>4</mn>\n <mi>k</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </mfrac>\n </mrow>\n <annotation> $\\frac{4k}{2k-1}$</annotation>\n </semantics></math>-flow, and applying this result to planar graphs, we conclude that every signed bipartite planar graph of negative girth at least <span></span><math>\n <semantics>\n <mrow>\n <mn>6</mn>\n <mi>k</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n <annotation> $6k-2$</annotation>\n </semantics></math> admits a homomorphism to the negative even cycles <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n <mi>k</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${C}_{-2k}$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circular flows in mono-directed signed graphs\",\"authors\":\"Jiaao Li,&nbsp;Reza Naserasr,&nbsp;Zhouningxin Wang,&nbsp;Xuding Zhu\",\"doi\":\"10.1002/jgt.23092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, the concept of circular <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math>-flow in a mono-directed signed graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>G</mi>\\n <mo>,</mo>\\n <mi>σ</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(G,\\\\sigma )$</annotation>\\n </semantics></math> is introduced. That is a pair <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>D</mi>\\n <mo>,</mo>\\n <mi>f</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(D,f)$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>D</mi>\\n </mrow>\\n <annotation> $D$</annotation>\\n </semantics></math> is an orientation on <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>:</mo>\\n <mi>E</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>→</mo>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mo>−</mo>\\n <mi>r</mi>\\n <mo>,</mo>\\n <mi>r</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $f:E(G)\\\\to (-r,r)$</annotation>\\n </semantics></math> satisfies that <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∣</mo>\\n <mi>f</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>e</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>∣</mo>\\n <mo>∈</mo>\\n <mrow>\\n <mo>[</mo>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>r</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <mo>]</mo>\\n </mrow>\\n </mrow>\\n <annotation> $| f(e)| \\\\in [1,r-1]$</annotation>\\n </semantics></math> for each positive edge <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>e</mi>\\n </mrow>\\n <annotation> $e$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∣</mo>\\n <mi>f</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>e</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>∣</mo>\\n <mo>∈</mo>\\n <mrow>\\n <mo>[</mo>\\n <mrow>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mfrac>\\n <mi>r</mi>\\n <mn>2</mn>\\n </mfrac>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <mo>]</mo>\\n </mrow>\\n <mo>∪</mo>\\n <mrow>\\n <mo>[</mo>\\n <mrow>\\n <mfrac>\\n <mi>r</mi>\\n <mn>2</mn>\\n </mfrac>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>r</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $| f(e)| \\\\in [0,\\\\frac{r}{2}-1]\\\\cup [\\\\frac{r}{2}+1,r)$</annotation>\\n </semantics></math> for each negative edge <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>e</mi>\\n </mrow>\\n <annotation> $e$</annotation>\\n </semantics></math>, and the total in-flow equals the total out-flow at each vertex. This is the dual notion of circular colorings of signed graphs and is distinct from the concept of circular flows in bi-directed graphs associated with signed graphs studied in the literature. We first explore the connection between circular <span></span><math>\\n <semantics>\\n <mrow>\\n <mfrac>\\n <mrow>\\n <mn>2</mn>\\n <mi>k</mi>\\n </mrow>\\n <mrow>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </mfrac>\\n </mrow>\\n <annotation> $\\\\frac{2k}{k-1}$</annotation>\\n </semantics></math>-flows and modulo <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-orientations in signed graphs. Then we focus on the upper bounds for the circular flow indices of signed graphs in terms of the edge-connectivity, where the circular flow index of a signed graph is the minimum value <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math> such that it admits a circular <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math>-flow. We prove that every 3-edge-connected signed graph admits a circular 6-flow and every 4-edge-connected signed graph admits a circular 4-flow. More generally, for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>≥</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation> $k\\\\ge 2$</annotation>\\n </semantics></math>, we show that every <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>3</mn>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(3k-1)$</annotation>\\n </semantics></math>-edge-connected signed graph admits a circular <span></span><math>\\n <semantics>\\n <mrow>\\n <mfrac>\\n <mrow>\\n <mn>2</mn>\\n <mi>k</mi>\\n </mrow>\\n <mrow>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </mfrac>\\n </mrow>\\n <annotation> $\\\\frac{2k}{k-1}$</annotation>\\n </semantics></math>-flow, every <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>3</mn>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $3k$</annotation>\\n </semantics></math>-edge-connected signed graph has a circular <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math>-flow with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n <mo>&lt;</mo>\\n <mfrac>\\n <mrow>\\n <mn>2</mn>\\n <mi>k</mi>\\n </mrow>\\n <mrow>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </mfrac>\\n </mrow>\\n <annotation> $r\\\\lt \\\\frac{2k}{k-1}$</annotation>\\n </semantics></math>, and every <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>3</mn>\\n <mi>k</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(3k+1)$</annotation>\\n </semantics></math>-edge-connected signed graph admits a circular <span></span><math>\\n <semantics>\\n <mrow>\\n <mfrac>\\n <mrow>\\n <mn>4</mn>\\n <mi>k</mi>\\n <mo>+</mo>\\n <mn>2</mn>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </mfrac>\\n </mrow>\\n <annotation> $\\\\frac{4k+2}{2k-1}$</annotation>\\n </semantics></math>-flow. Moreover, the <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>6</mn>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(6k-2)$</annotation>\\n </semantics></math>-edge-connectivity condition is shown to be sufficient for a signed Eulerian graph to admit a circular <span></span><math>\\n <semantics>\\n <mrow>\\n <mfrac>\\n <mrow>\\n <mn>4</mn>\\n <mi>k</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </mfrac>\\n </mrow>\\n <annotation> $\\\\frac{4k}{2k-1}$</annotation>\\n </semantics></math>-flow, and applying this result to planar graphs, we conclude that every signed bipartite planar graph of negative girth at least <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>6</mn>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation> $6k-2$</annotation>\\n </semantics></math> admits a homomorphism to the negative even cycles <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>C</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>2</mn>\\n <mi>k</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation> ${C}_{-2k}$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了单向有符号图(G,σ)$(G,\sigma )$中循环 r$r$ 流的概念。即一对 (D,f)$(D,f)$,其中 D$D$ 是 G$G$ 上的方向,f:E(G)→(-r,r)$f:E(G)\to(-r,r)$满足∣f(e)∣∈[1,r-1]$| f(e)| \in [1,r-1]$ for each positive edge e$e$ and ∣f(e)∣∈[0,r2-1]∪[r2+1、r)$|f(e)|\in[0,\frac{r}{2}-1]\cup [\frac{r}{2}+1,r)$对于每条负边 e$e$,总流入等于每个顶点的总流出。这就是有符号图的循环着色的对偶概念,有别于文献中研究的与有符号图相关的双向图中的循环流概念。我们首先探讨了有符号图中循环 2kk-1$\frac{2k}{k-1}$ 流与 modulo k$k$-orientation 之间的联系。有符号图的循环流指数是允许循环 r$r$ 流的最小值 r$r$。我们证明了每一个 3 边连接的有符号图都允许循环 6 流,每一个 4 边连接的有符号图都允许循环 4 流。更一般地说,对于 k≥2$k\ge 2$,我们证明每一个 (3k-1)$(3k-1)$ 边连接的有符号图都有一个环形 2kk-1$frac{2k}{k-1}$ 流,每一个 3k$3k$ 边连接的有符号图都有一个环形 r$r$ 流,r<;2kk-1$r\lt \frac{2k}{k-1}$,而每个 (3k+1)$(3k+1)$ 边连接的有符号图都有一个循环的 4k+22k-1$frac{4k+2}{2k-1}$ 流。此外,(6k-2)$(6k-2)$-边连接条件被证明足以让有符号欧拉图接纳循环 4k2k-1$/frac{4k}{2k-1}$-流,将这一结果应用于平面图,我们得出结论:每个负周长至少为 6k-2$6k-2$ 的有符号双方平面图都接纳与负偶数循环 C-2k${C}_{-2k}$ 的同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Circular flows in mono-directed signed graphs

In this paper, the concept of circular r $r$ -flow in a mono-directed signed graph ( G , σ ) $(G,\sigma )$ is introduced. That is a pair ( D , f ) $(D,f)$ , where D $D$ is an orientation on G $G$ and f : E ( G ) ( r , r ) $f:E(G)\to (-r,r)$ satisfies that f ( e ) [ 1 , r 1 ] $| f(e)| \in [1,r-1]$ for each positive edge e $e$ and f ( e ) [ 0 , r 2 1 ] [ r 2 + 1 , r ) $| f(e)| \in [0,\frac{r}{2}-1]\cup [\frac{r}{2}+1,r)$ for each negative edge e $e$ , and the total in-flow equals the total out-flow at each vertex. This is the dual notion of circular colorings of signed graphs and is distinct from the concept of circular flows in bi-directed graphs associated with signed graphs studied in the literature. We first explore the connection between circular 2 k k 1 $\frac{2k}{k-1}$ -flows and modulo k $k$ -orientations in signed graphs. Then we focus on the upper bounds for the circular flow indices of signed graphs in terms of the edge-connectivity, where the circular flow index of a signed graph is the minimum value r $r$ such that it admits a circular r $r$ -flow. We prove that every 3-edge-connected signed graph admits a circular 6-flow and every 4-edge-connected signed graph admits a circular 4-flow. More generally, for k 2 $k\ge 2$ , we show that every ( 3 k 1 ) $(3k-1)$ -edge-connected signed graph admits a circular 2 k k 1 $\frac{2k}{k-1}$ -flow, every 3 k $3k$ -edge-connected signed graph has a circular r $r$ -flow with r < 2 k k 1 $r\lt \frac{2k}{k-1}$ , and every ( 3 k + 1 ) $(3k+1)$ -edge-connected signed graph admits a circular 4 k + 2 2 k 1 $\frac{4k+2}{2k-1}$ -flow. Moreover, the ( 6 k 2 ) $(6k-2)$ -edge-connectivity condition is shown to be sufficient for a signed Eulerian graph to admit a circular 4 k 2 k 1 $\frac{4k}{2k-1}$ -flow, and applying this result to planar graphs, we conclude that every signed bipartite planar graph of negative girth at least 6 k 2 $6k-2$ admits a homomorphism to the negative even cycles C 2 k ${C}_{-2k}$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信