七段体的色度数

IF 0.9 3区 数学 Q2 MATHEMATICS
Di Wu, Baogang Xu, Yian Xu
{"title":"七段体的色度数","authors":"Di Wu,&nbsp;Baogang Xu,&nbsp;Yian Xu","doi":"10.1002/jgt.23094","DOIUrl":null,"url":null,"abstract":"<p>A pentagraph is a graph without cycles of length 3 or 4 and without induced cycles of odd length at least 7, and a heptagraph is one without cycles of length less than 7 and without induced cycles of odd length at least 9. Chudnovsky and Seymour proved that every pentagraph is 3-colorable. In this paper, we show that every heptagraph is 3-colorable.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 3","pages":"711-736"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The chromatic number of heptagraphs\",\"authors\":\"Di Wu,&nbsp;Baogang Xu,&nbsp;Yian Xu\",\"doi\":\"10.1002/jgt.23094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A pentagraph is a graph without cycles of length 3 or 4 and without induced cycles of odd length at least 7, and a heptagraph is one without cycles of length less than 7 and without induced cycles of odd length at least 9. Chudnovsky and Seymour proved that every pentagraph is 3-colorable. In this paper, we show that every heptagraph is 3-colorable.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"106 3\",\"pages\":\"711-736\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23094\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23094","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

五段图是没有长度为 3 或 4 的循环且没有奇数长度至少为 7 的诱导循环的图形,七段图是没有长度小于 7 的循环且没有奇数长度至少为 9 的诱导循环的图形。Chudnovsky 和 Seymour 证明了每个五段都是 3 色的。在本文中,我们将证明每个七段都是 3 色的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The chromatic number of heptagraphs

A pentagraph is a graph without cycles of length 3 or 4 and without induced cycles of odd length at least 7, and a heptagraph is one without cycles of length less than 7 and without induced cycles of odd length at least 9. Chudnovsky and Seymour proved that every pentagraph is 3-colorable. In this paper, we show that every heptagraph is 3-colorable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信