Christopher D. Traill, Paula Conde-Pardo, Tyler Rohr, Pier van der Merwe, Ashley T. Townsend, Pauline Latour, Melanie Gault-Ringold, Kathrin Wuttig, Matthew Corkill, Thomas M. Holmes, Mark J. Warner, Elizabeth Shadwick, Andrew R. Bowie
{"title":"塔斯马尼亚和南极洲之间南大洋经向铁分布驱动因素的机理约束","authors":"Christopher D. Traill, Paula Conde-Pardo, Tyler Rohr, Pier van der Merwe, Ashley T. Townsend, Pauline Latour, Melanie Gault-Ringold, Kathrin Wuttig, Matthew Corkill, Thomas M. Holmes, Mark J. Warner, Elizabeth Shadwick, Andrew R. Bowie","doi":"10.1029/2023GB007856","DOIUrl":null,"url":null,"abstract":"<p>While modeling efforts have furthered our understanding of marine iron biogeochemistry and its influence on carbon sequestration, observations of dissolved iron (dFe) and its relationship to physical, chemical and biological processes in the ocean are needed to both validate and inform model parameterization. Where iron comes from, how it is transported and recycled, and where iron removal takes place are critical mechanisms that need to be understood to assess the relationship between iron availability and primary production. To this end, hydrographic and trace metal observations across the GO-SHIP section SR3, south of Tasmania, Australia, have been analyzed in tandem with the novel application of an optimum multiparameter analysis. From the trace-metal distribution south of Australia, key differences in the drivers of dFe between oceanographic zones of the Southern Ocean were identified. In the subtropical zone, sources of dFe were attributed to waters advected off the continental shelf, and to recirculated modified mode and intermediate water-masses of the Tasman Outflow. In the subantarctic zone, the seasonal replenishment of dFe in Antarctic surface and mode waters appears to be sustained by iron recycling in the underlying mode and intermediate waters. In the southern zone, the dFe distribution is likely driven by dissolution and scavenging by high concentrations of particles along the Antarctic continental shelf and slope entrained in high salinity shelf water. This approach to trace metal analysis may prove useful in future transects for identifying key mechanisms driving marine dissolved trace metal distributions.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 3","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB007856","citationCount":"0","resultStr":"{\"title\":\"Mechanistic Constraints on the Drivers of Southern Ocean Meridional Iron Distributions Between Tasmania and Antarctica\",\"authors\":\"Christopher D. Traill, Paula Conde-Pardo, Tyler Rohr, Pier van der Merwe, Ashley T. Townsend, Pauline Latour, Melanie Gault-Ringold, Kathrin Wuttig, Matthew Corkill, Thomas M. Holmes, Mark J. Warner, Elizabeth Shadwick, Andrew R. Bowie\",\"doi\":\"10.1029/2023GB007856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>While modeling efforts have furthered our understanding of marine iron biogeochemistry and its influence on carbon sequestration, observations of dissolved iron (dFe) and its relationship to physical, chemical and biological processes in the ocean are needed to both validate and inform model parameterization. Where iron comes from, how it is transported and recycled, and where iron removal takes place are critical mechanisms that need to be understood to assess the relationship between iron availability and primary production. To this end, hydrographic and trace metal observations across the GO-SHIP section SR3, south of Tasmania, Australia, have been analyzed in tandem with the novel application of an optimum multiparameter analysis. From the trace-metal distribution south of Australia, key differences in the drivers of dFe between oceanographic zones of the Southern Ocean were identified. In the subtropical zone, sources of dFe were attributed to waters advected off the continental shelf, and to recirculated modified mode and intermediate water-masses of the Tasman Outflow. In the subantarctic zone, the seasonal replenishment of dFe in Antarctic surface and mode waters appears to be sustained by iron recycling in the underlying mode and intermediate waters. In the southern zone, the dFe distribution is likely driven by dissolution and scavenging by high concentrations of particles along the Antarctic continental shelf and slope entrained in high salinity shelf water. This approach to trace metal analysis may prove useful in future transects for identifying key mechanisms driving marine dissolved trace metal distributions.</p>\",\"PeriodicalId\":12729,\"journal\":{\"name\":\"Global Biogeochemical Cycles\",\"volume\":\"38 3\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB007856\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Biogeochemical Cycles\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023GB007856\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GB007856","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Mechanistic Constraints on the Drivers of Southern Ocean Meridional Iron Distributions Between Tasmania and Antarctica
While modeling efforts have furthered our understanding of marine iron biogeochemistry and its influence on carbon sequestration, observations of dissolved iron (dFe) and its relationship to physical, chemical and biological processes in the ocean are needed to both validate and inform model parameterization. Where iron comes from, how it is transported and recycled, and where iron removal takes place are critical mechanisms that need to be understood to assess the relationship between iron availability and primary production. To this end, hydrographic and trace metal observations across the GO-SHIP section SR3, south of Tasmania, Australia, have been analyzed in tandem with the novel application of an optimum multiparameter analysis. From the trace-metal distribution south of Australia, key differences in the drivers of dFe between oceanographic zones of the Southern Ocean were identified. In the subtropical zone, sources of dFe were attributed to waters advected off the continental shelf, and to recirculated modified mode and intermediate water-masses of the Tasman Outflow. In the subantarctic zone, the seasonal replenishment of dFe in Antarctic surface and mode waters appears to be sustained by iron recycling in the underlying mode and intermediate waters. In the southern zone, the dFe distribution is likely driven by dissolution and scavenging by high concentrations of particles along the Antarctic continental shelf and slope entrained in high salinity shelf water. This approach to trace metal analysis may prove useful in future transects for identifying key mechanisms driving marine dissolved trace metal distributions.
期刊介绍:
Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.