多组分合金增材制造中对流热量和溶质传递的晶格玻尔兹曼建模

IF 10.3 1区 工程技术 Q1 ENGINEERING, MANUFACTURING
Wenbin Zhang , Dongke Sun , Wei Chen , Shuanglin Chen
{"title":"多组分合金增材制造中对流热量和溶质传递的晶格玻尔兹曼建模","authors":"Wenbin Zhang ,&nbsp;Dongke Sun ,&nbsp;Wei Chen ,&nbsp;Shuanglin Chen","doi":"10.1016/j.addma.2024.104089","DOIUrl":null,"url":null,"abstract":"<div><p>Additive manufacturing (AM) is a remarkable breakthrough technology, allowing for the direct fabrication of three-dimensional components through the layer-by-layer stacking of materials. A novel free Surface lattice Boltzmann (LB) model is developed to simulate the heat and solute transfer in AM of multi-component alloys. The behavior liquid phase is described by using the free surface LB model, and the phase transitions between solid and liquid are modeled by using the LB-enthalpy method. A LB equation is directly constructed, which accounts for solute transfer in a certain multi-component alloys system. The thermodynamic information used in the calculation of phase transitions are determined by an extensive thermodynamic database. The model is validated via several benchmark examples of fluid flow and heat transfer. The characteristics of convective heat and solute transfer within various AM are investigated. Finally, the non-equilibrium convective heat transfer, phase transitions, and macroscopic segregation are discussed within the AM melt pools. The melt pool expands and convective heat transfer is enhanced by the Marangoni effect. Thus there is a consistent decrease in solute segregation. The solute segregation is more severe near the surface of the deposit layer. Additionally, the thermal convection experiences cyclic intensification attributed to the successive impact of multiple droplets in wire feeding and melting AM. This continuous impact serves to diminish the solute segregation. The results underscore the significant potential and advantages of LB method in accurately simulating the AM, which provides valuable insights for understanding the underlying mechanism of heat and solute transfer in materials and manufacturing.</p></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":null,"pages":null},"PeriodicalIF":10.3000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lattice Boltzmann modeling of convective heat and solute transfer in additive manufacturing of multi-component alloys\",\"authors\":\"Wenbin Zhang ,&nbsp;Dongke Sun ,&nbsp;Wei Chen ,&nbsp;Shuanglin Chen\",\"doi\":\"10.1016/j.addma.2024.104089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Additive manufacturing (AM) is a remarkable breakthrough technology, allowing for the direct fabrication of three-dimensional components through the layer-by-layer stacking of materials. A novel free Surface lattice Boltzmann (LB) model is developed to simulate the heat and solute transfer in AM of multi-component alloys. The behavior liquid phase is described by using the free surface LB model, and the phase transitions between solid and liquid are modeled by using the LB-enthalpy method. A LB equation is directly constructed, which accounts for solute transfer in a certain multi-component alloys system. The thermodynamic information used in the calculation of phase transitions are determined by an extensive thermodynamic database. The model is validated via several benchmark examples of fluid flow and heat transfer. The characteristics of convective heat and solute transfer within various AM are investigated. Finally, the non-equilibrium convective heat transfer, phase transitions, and macroscopic segregation are discussed within the AM melt pools. The melt pool expands and convective heat transfer is enhanced by the Marangoni effect. Thus there is a consistent decrease in solute segregation. The solute segregation is more severe near the surface of the deposit layer. Additionally, the thermal convection experiences cyclic intensification attributed to the successive impact of multiple droplets in wire feeding and melting AM. This continuous impact serves to diminish the solute segregation. The results underscore the significant potential and advantages of LB method in accurately simulating the AM, which provides valuable insights for understanding the underlying mechanism of heat and solute transfer in materials and manufacturing.</p></div>\",\"PeriodicalId\":7172,\"journal\":{\"name\":\"Additive manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.3000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214860424001350\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860424001350","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

增材制造(AM)是一项具有重大突破的技术,可通过逐层堆叠材料直接制造三维部件。本研究开发了一种新颖的自由表面晶格玻尔兹曼(LB)模型,用于模拟多组分合金在增材制造过程中的热量和溶质传递。自由表面 LB 模型描述了行为液相,LB-焓法模拟了固液之间的相变。直接构建的 LB 方程考虑了特定多组分合金体系中的溶质转移。计算相变所用的热力学信息由一个庞大的热力学数据库确定。该模型通过几个流体流动和热传递的基准实例进行了验证。研究了各种 AM 内对流传热和溶质传递的特点。最后,讨论了 AM 熔池中的非平衡对流传热、相变和宏观偏析。在马兰戈尼效应的作用下,熔池扩大,对流传热增强。因此,溶质偏析持续减少。沉积层表面附近的溶质偏析更为严重。此外,在送丝和熔化 AM 的过程中,由于多个液滴的连续冲击,热对流会出现周期性增强。这种持续的影响有助于减少溶质偏析。这些结果凸显了 LB 方法在精确模拟 AM 方面的巨大潜力和优势,为理解材料和制造过程中热量和溶质传递的基本机制提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lattice Boltzmann modeling of convective heat and solute transfer in additive manufacturing of multi-component alloys

Additive manufacturing (AM) is a remarkable breakthrough technology, allowing for the direct fabrication of three-dimensional components through the layer-by-layer stacking of materials. A novel free Surface lattice Boltzmann (LB) model is developed to simulate the heat and solute transfer in AM of multi-component alloys. The behavior liquid phase is described by using the free surface LB model, and the phase transitions between solid and liquid are modeled by using the LB-enthalpy method. A LB equation is directly constructed, which accounts for solute transfer in a certain multi-component alloys system. The thermodynamic information used in the calculation of phase transitions are determined by an extensive thermodynamic database. The model is validated via several benchmark examples of fluid flow and heat transfer. The characteristics of convective heat and solute transfer within various AM are investigated. Finally, the non-equilibrium convective heat transfer, phase transitions, and macroscopic segregation are discussed within the AM melt pools. The melt pool expands and convective heat transfer is enhanced by the Marangoni effect. Thus there is a consistent decrease in solute segregation. The solute segregation is more severe near the surface of the deposit layer. Additionally, the thermal convection experiences cyclic intensification attributed to the successive impact of multiple droplets in wire feeding and melting AM. This continuous impact serves to diminish the solute segregation. The results underscore the significant potential and advantages of LB method in accurately simulating the AM, which provides valuable insights for understanding the underlying mechanism of heat and solute transfer in materials and manufacturing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Additive manufacturing
Additive manufacturing Materials Science-General Materials Science
CiteScore
19.80
自引率
12.70%
发文量
648
审稿时长
35 days
期刊介绍: Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects. The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信