Ye Liang , Taibao Yang , Lindong Wang , Peihong Shi , G.G. Matishovc , A.A. Velichko , Biao Zeng
{"title":"亚速海 Beglitsa 黄土剖面中粒度末级分子和石英表面微纹理特征的指示意义","authors":"Ye Liang , Taibao Yang , Lindong Wang , Peihong Shi , G.G. Matishovc , A.A. Velichko , Biao Zeng","doi":"10.1016/j.aeolia.2024.100921","DOIUrl":null,"url":null,"abstract":"<div><p>The loess accumulation processes in the Azov Sea region leaves a record of atmospheric circulation trends in southern Russia, which can be used to explore aeolian dynamics and atmospheric circulation evolution. However, the historical aeolian transportation and accumulation processes of the loess deposits in this region remain controversial, which limits our understanding of aeolian dust dynamics. In the present study, based on grain size analysis and scanning electron microscopy imaging, grain size end-member and microtextural characteristics of loess sediments in the Beglitsa section of the Sea of Azov were studied to reveal their sedimentary environments and processes. According to the results, the Beglitsa section exhibits typical characteristics of aeolian sediment. EM analysis revealed that the Sea of Azov loess is composed of materials from both distant and proximal sources transported by high-altitude westerly and mesoscale regional winds, respectively. Particle shape and morphology indicated that the Azov loess materials have experienced wind and flow action. The application of the two methods revealed that the formation of the Azov loess is a complex process from source to sink. It results from the combined effects of high-altitude westerly winds, low-altitude local wind systems, and near-surface air flow in the course of development, which is also influenced by sea-level rise and fall. The results of the present study lay a foundation for the interpretation of historical aeolian dynamics and environmental significance of the Azov loess.</p></div>","PeriodicalId":49246,"journal":{"name":"Aeolian Research","volume":"67 ","pages":"Article 100921"},"PeriodicalIF":3.1000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The indicative significance of grain size end-members and quartz surface microtextural features in Beglitsa loess sections at the Sea of Azov\",\"authors\":\"Ye Liang , Taibao Yang , Lindong Wang , Peihong Shi , G.G. Matishovc , A.A. Velichko , Biao Zeng\",\"doi\":\"10.1016/j.aeolia.2024.100921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The loess accumulation processes in the Azov Sea region leaves a record of atmospheric circulation trends in southern Russia, which can be used to explore aeolian dynamics and atmospheric circulation evolution. However, the historical aeolian transportation and accumulation processes of the loess deposits in this region remain controversial, which limits our understanding of aeolian dust dynamics. In the present study, based on grain size analysis and scanning electron microscopy imaging, grain size end-member and microtextural characteristics of loess sediments in the Beglitsa section of the Sea of Azov were studied to reveal their sedimentary environments and processes. According to the results, the Beglitsa section exhibits typical characteristics of aeolian sediment. EM analysis revealed that the Sea of Azov loess is composed of materials from both distant and proximal sources transported by high-altitude westerly and mesoscale regional winds, respectively. Particle shape and morphology indicated that the Azov loess materials have experienced wind and flow action. The application of the two methods revealed that the formation of the Azov loess is a complex process from source to sink. It results from the combined effects of high-altitude westerly winds, low-altitude local wind systems, and near-surface air flow in the course of development, which is also influenced by sea-level rise and fall. The results of the present study lay a foundation for the interpretation of historical aeolian dynamics and environmental significance of the Azov loess.</p></div>\",\"PeriodicalId\":49246,\"journal\":{\"name\":\"Aeolian Research\",\"volume\":\"67 \",\"pages\":\"Article 100921\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aeolian Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1875963724000326\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeolian Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875963724000326","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
The indicative significance of grain size end-members and quartz surface microtextural features in Beglitsa loess sections at the Sea of Azov
The loess accumulation processes in the Azov Sea region leaves a record of atmospheric circulation trends in southern Russia, which can be used to explore aeolian dynamics and atmospheric circulation evolution. However, the historical aeolian transportation and accumulation processes of the loess deposits in this region remain controversial, which limits our understanding of aeolian dust dynamics. In the present study, based on grain size analysis and scanning electron microscopy imaging, grain size end-member and microtextural characteristics of loess sediments in the Beglitsa section of the Sea of Azov were studied to reveal their sedimentary environments and processes. According to the results, the Beglitsa section exhibits typical characteristics of aeolian sediment. EM analysis revealed that the Sea of Azov loess is composed of materials from both distant and proximal sources transported by high-altitude westerly and mesoscale regional winds, respectively. Particle shape and morphology indicated that the Azov loess materials have experienced wind and flow action. The application of the two methods revealed that the formation of the Azov loess is a complex process from source to sink. It results from the combined effects of high-altitude westerly winds, low-altitude local wind systems, and near-surface air flow in the course of development, which is also influenced by sea-level rise and fall. The results of the present study lay a foundation for the interpretation of historical aeolian dynamics and environmental significance of the Azov loess.
期刊介绍:
The scope of Aeolian Research includes the following topics:
• Fundamental Aeolian processes, including sand and dust entrainment, transport and deposition of sediment
• Modeling and field studies of Aeolian processes
• Instrumentation/measurement in the field and lab
• Practical applications including environmental impacts and erosion control
• Aeolian landforms, geomorphology and paleoenvironments
• Dust-atmosphere/cloud interactions.