利用谷歌和 Youtube 数字痕迹预测焦虑情绪

Joshua Rochotte , Aniket Sanap , Vincent Silenzio , Vivek K. Singh
{"title":"利用谷歌和 Youtube 数字痕迹预测焦虑情绪","authors":"Joshua Rochotte ,&nbsp;Aniket Sanap ,&nbsp;Vincent Silenzio ,&nbsp;Vivek K. Singh","doi":"10.1016/j.etdah.2024.100145","DOIUrl":null,"url":null,"abstract":"<div><p>Anxiety is a widespread and serious mental health issue that has been exacerbated by the COVID-19 pandemic and other stressors. In this study, we explore how online behavior data from Google and YouTube can be used to infer anxiety levels in individuals. We collected and processed digital traces from nearly 100 participants over eight weeks and applied various machine learning techniques to extract features and build predictive models. We found that combining data from multiple media modalities can yield highly accurate predictive models for anxiety as self-reported by a clinical GAD-7 scale (AUC &gt; 0.86). We also found that the semantic categories of online engagement can affect the predictive performance of the models. This study contributes to the field of computational social science and digital mental health and demonstrates the potential of using online behavior data to monitor psychological well-being and design interventions for anxiety.</p></div>","PeriodicalId":72899,"journal":{"name":"Emerging trends in drugs, addictions, and health","volume":"4 ","pages":"Article 100145"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667118224000047/pdfft?md5=a688ed04bceb58697fc812f2727a8f8d&pid=1-s2.0-S2667118224000047-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Predicting anxiety using Google and Youtube digital traces\",\"authors\":\"Joshua Rochotte ,&nbsp;Aniket Sanap ,&nbsp;Vincent Silenzio ,&nbsp;Vivek K. Singh\",\"doi\":\"10.1016/j.etdah.2024.100145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Anxiety is a widespread and serious mental health issue that has been exacerbated by the COVID-19 pandemic and other stressors. In this study, we explore how online behavior data from Google and YouTube can be used to infer anxiety levels in individuals. We collected and processed digital traces from nearly 100 participants over eight weeks and applied various machine learning techniques to extract features and build predictive models. We found that combining data from multiple media modalities can yield highly accurate predictive models for anxiety as self-reported by a clinical GAD-7 scale (AUC &gt; 0.86). We also found that the semantic categories of online engagement can affect the predictive performance of the models. This study contributes to the field of computational social science and digital mental health and demonstrates the potential of using online behavior data to monitor psychological well-being and design interventions for anxiety.</p></div>\",\"PeriodicalId\":72899,\"journal\":{\"name\":\"Emerging trends in drugs, addictions, and health\",\"volume\":\"4 \",\"pages\":\"Article 100145\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667118224000047/pdfft?md5=a688ed04bceb58697fc812f2727a8f8d&pid=1-s2.0-S2667118224000047-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging trends in drugs, addictions, and health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667118224000047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging trends in drugs, addictions, and health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667118224000047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

焦虑是一个普遍而严重的心理健康问题,COVID-19 大流行和其他压力因素加剧了这一问题。在本研究中,我们探讨了如何利用谷歌和 YouTube 的在线行为数据来推断个人的焦虑水平。我们收集并处理了近 100 名参与者历时八周的数字痕迹,并应用各种机器学习技术提取特征和建立预测模型。我们发现,将来自多种媒体模式的数据结合起来,可以产生临床 GAD-7 量表自我报告的高度准确的焦虑预测模型(AUC > 0.86)。我们还发现,在线参与的语义类别会影响模型的预测性能。这项研究为计算社会科学和数字心理健康领域做出了贡献,并展示了利用在线行为数据监测心理健康和设计焦虑症干预措施的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting anxiety using Google and Youtube digital traces

Anxiety is a widespread and serious mental health issue that has been exacerbated by the COVID-19 pandemic and other stressors. In this study, we explore how online behavior data from Google and YouTube can be used to infer anxiety levels in individuals. We collected and processed digital traces from nearly 100 participants over eight weeks and applied various machine learning techniques to extract features and build predictive models. We found that combining data from multiple media modalities can yield highly accurate predictive models for anxiety as self-reported by a clinical GAD-7 scale (AUC > 0.86). We also found that the semantic categories of online engagement can affect the predictive performance of the models. This study contributes to the field of computational social science and digital mental health and demonstrates the potential of using online behavior data to monitor psychological well-being and design interventions for anxiety.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Emerging trends in drugs, addictions, and health
Emerging trends in drugs, addictions, and health Pharmacology, Psychiatry and Mental Health, Forensic Medicine, Drug Discovery, Pharmacology, Toxicology and Pharmaceutics (General)
CiteScore
2.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信