作为高密度阳极的塌陷 N&S 双掺杂碳纳米笼,实现锂离子电池的超高体积性能

IF 5.9 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Qi Liu , Chenghui Mao , Guochang Li , Yu Zeng , Changkai Zhou , Qinghua Gong , Lijun Yang , Xizhang Wang , Qiang Wu , Zheng Hu
{"title":"作为高密度阳极的塌陷 N&S 双掺杂碳纳米笼,实现锂离子电池的超高体积性能","authors":"Qi Liu ,&nbsp;Chenghui Mao ,&nbsp;Guochang Li ,&nbsp;Yu Zeng ,&nbsp;Changkai Zhou ,&nbsp;Qinghua Gong ,&nbsp;Lijun Yang ,&nbsp;Xizhang Wang ,&nbsp;Qiang Wu ,&nbsp;Zheng Hu","doi":"10.1016/j.flatc.2024.100647","DOIUrl":null,"url":null,"abstract":"<div><p>Compact lithium-ion batteries for miniaturized devices require high-volumetric-performance anodes. Either the graphite with high density or the porous nanocarbons with high gravimetric performance is limited in volumetric performance. Herein, we construct a series of anode materials, i.e. the collapsed carbon nanocages with different dopants, by capillarity compression, which achieves a high density of ∼0.97 g cm<sup>−3</sup> but remains abundant micropores with increased active sites and enlarged interlayer distance. The N&amp;S dual-doping redistributes the charges of sp<sup>2</sup> carbon to an optimal status, leading to the high Li-ion capacity, meanwhile facilitates the wettability at the electrode/electrolyte interface, leading to the enhanced Li-ion diffusion coefficient. Accordingly, the collapsed N&amp;S dual-doped carbon nanocages (cNSCNC) anode exhibits a record-high volumetric capacity of 1578 mAh cm<sup>−3</sup> at 0.1 A g<sup>−1</sup>, excellent rate capability and cycling stability, thus achieving an ultrahigh volumetric energy density of 1087 Wh L<sup>−1</sup> at 120 W L<sup>−1</sup> for the cNSCNC//LiFePO<sub>4</sub> full cell.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"45 ","pages":"Article 100647"},"PeriodicalIF":5.9000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collapsed N&S dual-doped carbon nanocages as high-density anode for ultrahigh volumetric performance of Li-ion batteries\",\"authors\":\"Qi Liu ,&nbsp;Chenghui Mao ,&nbsp;Guochang Li ,&nbsp;Yu Zeng ,&nbsp;Changkai Zhou ,&nbsp;Qinghua Gong ,&nbsp;Lijun Yang ,&nbsp;Xizhang Wang ,&nbsp;Qiang Wu ,&nbsp;Zheng Hu\",\"doi\":\"10.1016/j.flatc.2024.100647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Compact lithium-ion batteries for miniaturized devices require high-volumetric-performance anodes. Either the graphite with high density or the porous nanocarbons with high gravimetric performance is limited in volumetric performance. Herein, we construct a series of anode materials, i.e. the collapsed carbon nanocages with different dopants, by capillarity compression, which achieves a high density of ∼0.97 g cm<sup>−3</sup> but remains abundant micropores with increased active sites and enlarged interlayer distance. The N&amp;S dual-doping redistributes the charges of sp<sup>2</sup> carbon to an optimal status, leading to the high Li-ion capacity, meanwhile facilitates the wettability at the electrode/electrolyte interface, leading to the enhanced Li-ion diffusion coefficient. Accordingly, the collapsed N&amp;S dual-doped carbon nanocages (cNSCNC) anode exhibits a record-high volumetric capacity of 1578 mAh cm<sup>−3</sup> at 0.1 A g<sup>−1</sup>, excellent rate capability and cycling stability, thus achieving an ultrahigh volumetric energy density of 1087 Wh L<sup>−1</sup> at 120 W L<sup>−1</sup> for the cNSCNC//LiFePO<sub>4</sub> full cell.</p></div>\",\"PeriodicalId\":316,\"journal\":{\"name\":\"FlatChem\",\"volume\":\"45 \",\"pages\":\"Article 100647\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FlatChem\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452262724000412\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724000412","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

用于微型设备的紧凑型锂离子电池需要高容积性能的阳极。无论是密度高的石墨还是重力性能高的多孔纳米碳,其体积性能都受到限制。在此,我们通过毛细管压缩技术构建了一系列负极材料,即不同掺杂剂的塌陷碳纳米笼,其密度达到了 0.97 g cm-3 以下,但仍保留了丰富的微孔,增加了活性位点,扩大了层间距离。N&S 双掺杂将 sp2 碳的电荷重新分配到最佳状态,从而提高了锂离子容量,同时促进了电极/电解质界面的润湿性,提高了锂离子扩散系数。因此,塌缩 N&S 双掺杂碳纳米笼(cNSCNC)阳极在 0.1 A g-1 时的体积容量达到了创纪录的 1578 mAh cm-3,并具有出色的速率能力和循环稳定性,从而使 cNSCNC//LiFePO4 全电池在 120 W L-1 时的体积能量密度达到了超高的 1087 Wh L-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Collapsed N&S dual-doped carbon nanocages as high-density anode for ultrahigh volumetric performance of Li-ion batteries

Collapsed N&S dual-doped carbon nanocages as high-density anode for ultrahigh volumetric performance of Li-ion batteries

Compact lithium-ion batteries for miniaturized devices require high-volumetric-performance anodes. Either the graphite with high density or the porous nanocarbons with high gravimetric performance is limited in volumetric performance. Herein, we construct a series of anode materials, i.e. the collapsed carbon nanocages with different dopants, by capillarity compression, which achieves a high density of ∼0.97 g cm−3 but remains abundant micropores with increased active sites and enlarged interlayer distance. The N&S dual-doping redistributes the charges of sp2 carbon to an optimal status, leading to the high Li-ion capacity, meanwhile facilitates the wettability at the electrode/electrolyte interface, leading to the enhanced Li-ion diffusion coefficient. Accordingly, the collapsed N&S dual-doped carbon nanocages (cNSCNC) anode exhibits a record-high volumetric capacity of 1578 mAh cm−3 at 0.1 A g−1, excellent rate capability and cycling stability, thus achieving an ultrahigh volumetric energy density of 1087 Wh L−1 at 120 W L−1 for the cNSCNC//LiFePO4 full cell.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FlatChem
FlatChem Multiple-
CiteScore
8.40
自引率
6.50%
发文量
104
审稿时长
26 days
期刊介绍: FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信