利用旅游情报和大数据解释旅游目的地的航班搜索情况:西班牙布兰卡海岸的案例

IF 7.3 2区 管理学 Q1 HOSPITALITY, LEISURE, SPORT & TOURISM
Jorge Pereira-Moliner , Mario Villar-García , José F. Molina-Azorín , Juan José Tarí , María D. López-Gamero , Eva M. Pertusa-Ortega
{"title":"利用旅游情报和大数据解释旅游目的地的航班搜索情况:西班牙布兰卡海岸的案例","authors":"Jorge Pereira-Moliner ,&nbsp;Mario Villar-García ,&nbsp;José F. Molina-Azorín ,&nbsp;Juan José Tarí ,&nbsp;María D. López-Gamero ,&nbsp;Eva M. Pertusa-Ortega","doi":"10.1016/j.tmp.2024.101243","DOIUrl":null,"url":null,"abstract":"<div><p>Tourism intelligence and big data can improve the strategic management of tourist destinations through analysis of the environment. This study aims to explain the flight searches from London and Manchester to the Costa Blanca using variables from big data sources: online hotel satisfaction levels, flight price, hotel price, and temperature. Data for three years (2019, 2020 and 2021) are analyzed and the results are compared. The results show that online hotel satisfaction levels heterogeneously explain flight searches during these years. Hotel price positively explains searches from London. Flight price only influenced searches in 2019. Temperature in outbound destinations is the variable that best explains flight searches. This study contributes to the literature on strategic management of tourist destinations by explaining the potential tourist demand in the early decision-making stages of a trip. We highlight that the explanatory variables do not behave consistently during the years analyzed.</p></div>","PeriodicalId":48141,"journal":{"name":"Tourism Management Perspectives","volume":"51 ","pages":"Article 101243"},"PeriodicalIF":7.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211973624000266/pdfft?md5=4133ba66586d8c22d4ad28f78ef408df&pid=1-s2.0-S2211973624000266-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Using tourism intelligence and big data to explain flight searches for tourist destinations: The case of the Costa Blanca (Spain)\",\"authors\":\"Jorge Pereira-Moliner ,&nbsp;Mario Villar-García ,&nbsp;José F. Molina-Azorín ,&nbsp;Juan José Tarí ,&nbsp;María D. López-Gamero ,&nbsp;Eva M. Pertusa-Ortega\",\"doi\":\"10.1016/j.tmp.2024.101243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tourism intelligence and big data can improve the strategic management of tourist destinations through analysis of the environment. This study aims to explain the flight searches from London and Manchester to the Costa Blanca using variables from big data sources: online hotel satisfaction levels, flight price, hotel price, and temperature. Data for three years (2019, 2020 and 2021) are analyzed and the results are compared. The results show that online hotel satisfaction levels heterogeneously explain flight searches during these years. Hotel price positively explains searches from London. Flight price only influenced searches in 2019. Temperature in outbound destinations is the variable that best explains flight searches. This study contributes to the literature on strategic management of tourist destinations by explaining the potential tourist demand in the early decision-making stages of a trip. We highlight that the explanatory variables do not behave consistently during the years analyzed.</p></div>\",\"PeriodicalId\":48141,\"journal\":{\"name\":\"Tourism Management Perspectives\",\"volume\":\"51 \",\"pages\":\"Article 101243\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2211973624000266/pdfft?md5=4133ba66586d8c22d4ad28f78ef408df&pid=1-s2.0-S2211973624000266-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tourism Management Perspectives\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211973624000266\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HOSPITALITY, LEISURE, SPORT & TOURISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tourism Management Perspectives","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211973624000266","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HOSPITALITY, LEISURE, SPORT & TOURISM","Score":null,"Total":0}
引用次数: 0

摘要

旅游情报和大数据可通过分析环境改善旅游目的地的战略管理。本研究旨在利用大数据源中的变量:在线酒店满意度水平、航班价格、酒店价格和气温,解释从伦敦和曼彻斯特飞往白色海岸的航班搜索情况。对三年(2019 年、2020 年和 2021 年)的数据进行了分析,并对结果进行了比较。结果显示,在线酒店满意度可以异质性地解释这几年的航班搜索情况。酒店价格对来自伦敦的搜索有积极的解释作用。航班价格只影响 2019 年的搜索量。出境目的地的温度是最能解释航班搜索的变量。本研究通过解释旅行早期决策阶段的潜在游客需求,为旅游目的地战略管理方面的文献做出了贡献。我们强调,在所分析的年份中,解释变量的表现并不一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using tourism intelligence and big data to explain flight searches for tourist destinations: The case of the Costa Blanca (Spain)

Tourism intelligence and big data can improve the strategic management of tourist destinations through analysis of the environment. This study aims to explain the flight searches from London and Manchester to the Costa Blanca using variables from big data sources: online hotel satisfaction levels, flight price, hotel price, and temperature. Data for three years (2019, 2020 and 2021) are analyzed and the results are compared. The results show that online hotel satisfaction levels heterogeneously explain flight searches during these years. Hotel price positively explains searches from London. Flight price only influenced searches in 2019. Temperature in outbound destinations is the variable that best explains flight searches. This study contributes to the literature on strategic management of tourist destinations by explaining the potential tourist demand in the early decision-making stages of a trip. We highlight that the explanatory variables do not behave consistently during the years analyzed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.60
自引率
3.40%
发文量
99
审稿时长
59 days
期刊介绍: Tourism Management Perspectives is an interdisciplinary journal that focuses on the planning and management of travel and tourism. It covers topics such as tourist experiences, their consequences for communities, economies, and environments, the creation of image, the shaping of tourist experiences and perceptions, and the management of tourist organizations and destinations. The journal's editorial board consists of experienced international professionals and it shares the board with Tourism Management. The journal covers socio-cultural, technological, planning, and policy aspects of international, national, and regional tourism, as well as specific management studies. It encourages papers that introduce new research methods and critique existing ones in the context of tourism research. The journal publishes empirical research articles and high-quality review articles on important topics and emerging themes that enhance the theoretical and conceptual understanding of key areas within travel and tourism management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信