Bas J van der Burgh, Suzanne J Filius, Giuseppe Radaelli, Jaap Harlaar
{"title":"不同扭矩曲线对手部重量补偿的功效。","authors":"Bas J van der Burgh, Suzanne J Filius, Giuseppe Radaelli, Jaap Harlaar","doi":"10.1017/wtc.2023.23","DOIUrl":null,"url":null,"abstract":"<p><p>Orthotic wrist supports will be beneficial for people with muscular weakness to keep their hand in a neutral rest position and prevent potential wrist contractures. Compensating the weight of the hands is complex since the level of support depends on both wrist and forearm orientations. To explore simplified approaches, two different weight compensation strategies (<i>constant</i> and <i>linear</i>) were compared to the theoretical ideal <i>sinusoidal</i> profile and no compensation in eight healthy subjects using a mechanical wrist support system. All three compensation strategies showed a significant reduction of 47-53% surface electromyography activity in the anti-gravity m. extensor carpi radialis. However, for the higher palmar flexion region, a significant increase of 44-61% in the m. flexor carpi radialis was found for all compensation strategies. No significant differences were observed between the various compensation strategies. Two conclusions can be drawn: (1) a simplified torque profile (e.g., constant or linear) for weight compensation can be considered as equally effective as the theoretically ideal sinusoidal profile and (2) even the theoretically ideal profile provides no perfect support as other factors than weight, such as passive joint impedance, most likely influence the required compensation torque for the wrist joint.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":"5 ","pages":"e2"},"PeriodicalIF":3.4000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10952050/pdf/","citationCount":"0","resultStr":"{\"title\":\"The efficacy of different torque profiles for weight compensation of the hand.\",\"authors\":\"Bas J van der Burgh, Suzanne J Filius, Giuseppe Radaelli, Jaap Harlaar\",\"doi\":\"10.1017/wtc.2023.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Orthotic wrist supports will be beneficial for people with muscular weakness to keep their hand in a neutral rest position and prevent potential wrist contractures. Compensating the weight of the hands is complex since the level of support depends on both wrist and forearm orientations. To explore simplified approaches, two different weight compensation strategies (<i>constant</i> and <i>linear</i>) were compared to the theoretical ideal <i>sinusoidal</i> profile and no compensation in eight healthy subjects using a mechanical wrist support system. All three compensation strategies showed a significant reduction of 47-53% surface electromyography activity in the anti-gravity m. extensor carpi radialis. However, for the higher palmar flexion region, a significant increase of 44-61% in the m. flexor carpi radialis was found for all compensation strategies. No significant differences were observed between the various compensation strategies. Two conclusions can be drawn: (1) a simplified torque profile (e.g., constant or linear) for weight compensation can be considered as equally effective as the theoretically ideal sinusoidal profile and (2) even the theoretically ideal profile provides no perfect support as other factors than weight, such as passive joint impedance, most likely influence the required compensation torque for the wrist joint.</p>\",\"PeriodicalId\":75318,\"journal\":{\"name\":\"Wearable technologies\",\"volume\":\"5 \",\"pages\":\"e2\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10952050/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wearable technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/wtc.2023.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wearable technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/wtc.2023.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
The efficacy of different torque profiles for weight compensation of the hand.
Orthotic wrist supports will be beneficial for people with muscular weakness to keep their hand in a neutral rest position and prevent potential wrist contractures. Compensating the weight of the hands is complex since the level of support depends on both wrist and forearm orientations. To explore simplified approaches, two different weight compensation strategies (constant and linear) were compared to the theoretical ideal sinusoidal profile and no compensation in eight healthy subjects using a mechanical wrist support system. All three compensation strategies showed a significant reduction of 47-53% surface electromyography activity in the anti-gravity m. extensor carpi radialis. However, for the higher palmar flexion region, a significant increase of 44-61% in the m. flexor carpi radialis was found for all compensation strategies. No significant differences were observed between the various compensation strategies. Two conclusions can be drawn: (1) a simplified torque profile (e.g., constant or linear) for weight compensation can be considered as equally effective as the theoretically ideal sinusoidal profile and (2) even the theoretically ideal profile provides no perfect support as other factors than weight, such as passive joint impedance, most likely influence the required compensation torque for the wrist joint.