Barak Zafrir, Ronen Durst, Clara Henig, Yaakov Henkin, Elena Itzhakov, Marielle Kaplan, Dov Gavish
{"title":"[以色列脂蛋白(a)升高的诊断和治疗:以色列动脉粥样硬化研究、预防和治疗协会与以色列临床实验室科学协会的共识声明]。","authors":"Barak Zafrir, Ronen Durst, Clara Henig, Yaakov Henkin, Elena Itzhakov, Marielle Kaplan, Dov Gavish","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Lipoprotein(a) [Lp(a)] is composed of 2 major protein components, a low-density lipoprotein (LDL) cholesterol-like particle containing apolipoprotein B (apo B) that is covalently bound to apolipoprotein(a). Its level is predominantly genetically determined, and it is estimated that 20% to 25% of the population have Lp(a) levels that are associated with increased cardiovascular risk. Elevated Lp(a) is related to increased vascular inflammation, calcification, atherogenesis and thrombosis, and is considered an independent and potentially causal risk factor for atherosclerotic cardiovascular diseases and calcified aortic valve stenosis. Recent data demonstrate that Lp(a) testing has the potential to reclassify patients' risk and improve cardiovascular risk prediction, and therefore could inform clinical decision-making regarding risk management. Statins and ezetimibe are ineffective in lowering Lp(a) levels, whereas proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors have a modest effect on Lp(a) reduction. Nevertheless, RNA interference-based therapies with potent Lp(a)-lowering effects are in advanced stages of development, and clinical trials are underway to confirm their benefit in reducing cardiovascular events. This scientific consensus document was developed by a committee that consisted of representatives from the Israeli Society for the Research, Prevention and Treatment of Atherosclerosis, and the Israeli Society for Clinical Laboratory Sciences, in order to create uniformity in Lp(a) measurement methods, indications for testing and reporting of the results, aiming to improve the diagnosis and management of elevated Lp(a) in clinical practice.</p>","PeriodicalId":101459,"journal":{"name":"Harefuah","volume":"163 3","pages":"185-190"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[DIAGNOSIS AND TREATMENT OF ELEVATED LIPOPROTEIN(A) IN ISRAEL: CONSENSUS STATEMENT FROM THE ISRAEL SOCIETY FOR RESEARCH, PREVENTION AND TREATMENT OF ATHEROSCLEROSIS AND ISRAEL SOCIETY FOR CLINICAL LABORATORY SCIENCES].\",\"authors\":\"Barak Zafrir, Ronen Durst, Clara Henig, Yaakov Henkin, Elena Itzhakov, Marielle Kaplan, Dov Gavish\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Lipoprotein(a) [Lp(a)] is composed of 2 major protein components, a low-density lipoprotein (LDL) cholesterol-like particle containing apolipoprotein B (apo B) that is covalently bound to apolipoprotein(a). Its level is predominantly genetically determined, and it is estimated that 20% to 25% of the population have Lp(a) levels that are associated with increased cardiovascular risk. Elevated Lp(a) is related to increased vascular inflammation, calcification, atherogenesis and thrombosis, and is considered an independent and potentially causal risk factor for atherosclerotic cardiovascular diseases and calcified aortic valve stenosis. Recent data demonstrate that Lp(a) testing has the potential to reclassify patients' risk and improve cardiovascular risk prediction, and therefore could inform clinical decision-making regarding risk management. Statins and ezetimibe are ineffective in lowering Lp(a) levels, whereas proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors have a modest effect on Lp(a) reduction. Nevertheless, RNA interference-based therapies with potent Lp(a)-lowering effects are in advanced stages of development, and clinical trials are underway to confirm their benefit in reducing cardiovascular events. This scientific consensus document was developed by a committee that consisted of representatives from the Israeli Society for the Research, Prevention and Treatment of Atherosclerosis, and the Israeli Society for Clinical Laboratory Sciences, in order to create uniformity in Lp(a) measurement methods, indications for testing and reporting of the results, aiming to improve the diagnosis and management of elevated Lp(a) in clinical practice.</p>\",\"PeriodicalId\":101459,\"journal\":{\"name\":\"Harefuah\",\"volume\":\"163 3\",\"pages\":\"185-190\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Harefuah\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Harefuah","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[DIAGNOSIS AND TREATMENT OF ELEVATED LIPOPROTEIN(A) IN ISRAEL: CONSENSUS STATEMENT FROM THE ISRAEL SOCIETY FOR RESEARCH, PREVENTION AND TREATMENT OF ATHEROSCLEROSIS AND ISRAEL SOCIETY FOR CLINICAL LABORATORY SCIENCES].
Introduction: Lipoprotein(a) [Lp(a)] is composed of 2 major protein components, a low-density lipoprotein (LDL) cholesterol-like particle containing apolipoprotein B (apo B) that is covalently bound to apolipoprotein(a). Its level is predominantly genetically determined, and it is estimated that 20% to 25% of the population have Lp(a) levels that are associated with increased cardiovascular risk. Elevated Lp(a) is related to increased vascular inflammation, calcification, atherogenesis and thrombosis, and is considered an independent and potentially causal risk factor for atherosclerotic cardiovascular diseases and calcified aortic valve stenosis. Recent data demonstrate that Lp(a) testing has the potential to reclassify patients' risk and improve cardiovascular risk prediction, and therefore could inform clinical decision-making regarding risk management. Statins and ezetimibe are ineffective in lowering Lp(a) levels, whereas proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors have a modest effect on Lp(a) reduction. Nevertheless, RNA interference-based therapies with potent Lp(a)-lowering effects are in advanced stages of development, and clinical trials are underway to confirm their benefit in reducing cardiovascular events. This scientific consensus document was developed by a committee that consisted of representatives from the Israeli Society for the Research, Prevention and Treatment of Atherosclerosis, and the Israeli Society for Clinical Laboratory Sciences, in order to create uniformity in Lp(a) measurement methods, indications for testing and reporting of the results, aiming to improve the diagnosis and management of elevated Lp(a) in clinical practice.