Yang Yang, Mehrgan Shahryari, Tom Meyer, Stephan Rodrigo Marticorena Garcia, Steffen Görner, Mahsa Salimi Majd, Jing Guo, Jürgen Braun, Ingolf Sack, Heiko Tzschätzsch
{"title":"利用超声时谐弹性成像技术对骨骼肌功能进行基于硬度的量化的探索性研究。","authors":"Yang Yang, Mehrgan Shahryari, Tom Meyer, Stephan Rodrigo Marticorena Garcia, Steffen Görner, Mahsa Salimi Majd, Jing Guo, Jürgen Braun, Ingolf Sack, Heiko Tzschätzsch","doi":"10.1016/j.zemedi.2024.03.001","DOIUrl":null,"url":null,"abstract":"<p><p>Time-harmonic elastography (THE) is an emerging ultrasound imaging technique that allows full-field mapping of the stiffness of deep biological tissues. THE's unique ability to rapidly capture stiffness in multiple tissues has never been applied for imaging skeletal muscle. Therefore, we addressed the lack of data on temporal changes in skeletal muscle stiffness while simultaneously covering stiffness of different muscles. Acquiring repeated THE scans every five seconds we quantified shear-wave speed (SWS) as a marker of stiffness of the long head (LHB) and short head (SHB) of biceps brachii and of the brachialis muscle (B) in ten healthy volunteers. SWS was continuously acquired during a 3-min isometric preloading phase, a 3-min loading phase with different weights (4, 8, and 12 kg), and a 9-min postloading phase. In addition, we analyzed temporal SWS standard deviation (SD) as a marker of muscle contraction regulation. Our results (median [min, max]) showed both SWS at preloading (LHB: 1.04 [0.94, 1.12] m/s, SHB: 0.86 [0.78, 0.94] m/s, B: 0.96 [0.87, 1.09] m/s, p < 0.001) and the increase in SWS with loading weight to be muscle-specific (LHB: 0.010 [0.002, 0.019] m/s/kg, SHB: 0.022 [0.017, 0.042] m/s/kg, B: 0.039 [0.019, 0.062] m/s/kg, p < 0.001). Additionally, SWS during loading increased continuously over time by 0.022 [0.004, 0.051] m/s/min (p < 0.01). Using an exponential decay model, we found an average relaxation time of 27 seconds during postloading. Analogously, SWS SD at preloading was also muscle-specific (LHB: 0.018 [0.011, 0.029] m/s, SHB: 0.021 [0.015, 0.027] m/s, B: 0.024 [0.018, 0.037] m/s, p < 0.05) and increased by 0.005 [0.003, 0.008] m/s/kg (p < 0.01) with loading. SWS SD did not change over loading time and decreased immediately in the postloading phase. Taken together, THE of skeletal muscle is a promising imaging technique for in vivo quantification of stiffness and stiffness changes in multiple muscle groups within seconds. Both the magnitude of stiffness changes and their temporal variation during isometric exercise may reflect the functional status of skeletal muscle and provide additional information to the morphological measures obtained by conventional imaging modalities.</p>","PeriodicalId":101315,"journal":{"name":"Zeitschrift fur medizinische Physik","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explorative study using ultrasound time-harmonic elastography for stiffness-based quantification of skeletal muscle function.\",\"authors\":\"Yang Yang, Mehrgan Shahryari, Tom Meyer, Stephan Rodrigo Marticorena Garcia, Steffen Görner, Mahsa Salimi Majd, Jing Guo, Jürgen Braun, Ingolf Sack, Heiko Tzschätzsch\",\"doi\":\"10.1016/j.zemedi.2024.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Time-harmonic elastography (THE) is an emerging ultrasound imaging technique that allows full-field mapping of the stiffness of deep biological tissues. THE's unique ability to rapidly capture stiffness in multiple tissues has never been applied for imaging skeletal muscle. Therefore, we addressed the lack of data on temporal changes in skeletal muscle stiffness while simultaneously covering stiffness of different muscles. Acquiring repeated THE scans every five seconds we quantified shear-wave speed (SWS) as a marker of stiffness of the long head (LHB) and short head (SHB) of biceps brachii and of the brachialis muscle (B) in ten healthy volunteers. SWS was continuously acquired during a 3-min isometric preloading phase, a 3-min loading phase with different weights (4, 8, and 12 kg), and a 9-min postloading phase. In addition, we analyzed temporal SWS standard deviation (SD) as a marker of muscle contraction regulation. Our results (median [min, max]) showed both SWS at preloading (LHB: 1.04 [0.94, 1.12] m/s, SHB: 0.86 [0.78, 0.94] m/s, B: 0.96 [0.87, 1.09] m/s, p < 0.001) and the increase in SWS with loading weight to be muscle-specific (LHB: 0.010 [0.002, 0.019] m/s/kg, SHB: 0.022 [0.017, 0.042] m/s/kg, B: 0.039 [0.019, 0.062] m/s/kg, p < 0.001). Additionally, SWS during loading increased continuously over time by 0.022 [0.004, 0.051] m/s/min (p < 0.01). Using an exponential decay model, we found an average relaxation time of 27 seconds during postloading. Analogously, SWS SD at preloading was also muscle-specific (LHB: 0.018 [0.011, 0.029] m/s, SHB: 0.021 [0.015, 0.027] m/s, B: 0.024 [0.018, 0.037] m/s, p < 0.05) and increased by 0.005 [0.003, 0.008] m/s/kg (p < 0.01) with loading. SWS SD did not change over loading time and decreased immediately in the postloading phase. Taken together, THE of skeletal muscle is a promising imaging technique for in vivo quantification of stiffness and stiffness changes in multiple muscle groups within seconds. Both the magnitude of stiffness changes and their temporal variation during isometric exercise may reflect the functional status of skeletal muscle and provide additional information to the morphological measures obtained by conventional imaging modalities.</p>\",\"PeriodicalId\":101315,\"journal\":{\"name\":\"Zeitschrift fur medizinische Physik\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur medizinische Physik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.zemedi.2024.03.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur medizinische Physik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.zemedi.2024.03.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Explorative study using ultrasound time-harmonic elastography for stiffness-based quantification of skeletal muscle function.
Time-harmonic elastography (THE) is an emerging ultrasound imaging technique that allows full-field mapping of the stiffness of deep biological tissues. THE's unique ability to rapidly capture stiffness in multiple tissues has never been applied for imaging skeletal muscle. Therefore, we addressed the lack of data on temporal changes in skeletal muscle stiffness while simultaneously covering stiffness of different muscles. Acquiring repeated THE scans every five seconds we quantified shear-wave speed (SWS) as a marker of stiffness of the long head (LHB) and short head (SHB) of biceps brachii and of the brachialis muscle (B) in ten healthy volunteers. SWS was continuously acquired during a 3-min isometric preloading phase, a 3-min loading phase with different weights (4, 8, and 12 kg), and a 9-min postloading phase. In addition, we analyzed temporal SWS standard deviation (SD) as a marker of muscle contraction regulation. Our results (median [min, max]) showed both SWS at preloading (LHB: 1.04 [0.94, 1.12] m/s, SHB: 0.86 [0.78, 0.94] m/s, B: 0.96 [0.87, 1.09] m/s, p < 0.001) and the increase in SWS with loading weight to be muscle-specific (LHB: 0.010 [0.002, 0.019] m/s/kg, SHB: 0.022 [0.017, 0.042] m/s/kg, B: 0.039 [0.019, 0.062] m/s/kg, p < 0.001). Additionally, SWS during loading increased continuously over time by 0.022 [0.004, 0.051] m/s/min (p < 0.01). Using an exponential decay model, we found an average relaxation time of 27 seconds during postloading. Analogously, SWS SD at preloading was also muscle-specific (LHB: 0.018 [0.011, 0.029] m/s, SHB: 0.021 [0.015, 0.027] m/s, B: 0.024 [0.018, 0.037] m/s, p < 0.05) and increased by 0.005 [0.003, 0.008] m/s/kg (p < 0.01) with loading. SWS SD did not change over loading time and decreased immediately in the postloading phase. Taken together, THE of skeletal muscle is a promising imaging technique for in vivo quantification of stiffness and stiffness changes in multiple muscle groups within seconds. Both the magnitude of stiffness changes and their temporal variation during isometric exercise may reflect the functional status of skeletal muscle and provide additional information to the morphological measures obtained by conventional imaging modalities.