鉴定出两种对黑孢蘑菇减数分裂后基部孢子形成至关重要的基因。

IF 2.4 3区 生物学 Q3 GENETICS & HEREDITY
Takeshi Kobukata , Takehito Nakazawa , Fuga Yamasaki , Junko Sugano , Minji Oh , Moriyuki Kawauchi , Masahiro Sakamoto , Yoichi Honda
{"title":"鉴定出两种对黑孢蘑菇减数分裂后基部孢子形成至关重要的基因。","authors":"Takeshi Kobukata ,&nbsp;Takehito Nakazawa ,&nbsp;Fuga Yamasaki ,&nbsp;Junko Sugano ,&nbsp;Minji Oh ,&nbsp;Moriyuki Kawauchi ,&nbsp;Masahiro Sakamoto ,&nbsp;Yoichi Honda","doi":"10.1016/j.fgb.2024.103890","DOIUrl":null,"url":null,"abstract":"<div><p>A sporeless strain is an important breeding target in the mushroom industry. However, basidiospore production in the oyster mushroom <em>Pleurotus ostreatus</em> has been shown to be impaired by single-gene mutations in only two meiosis-related genes, <em>mer3</em> and <em>msh4</em>. This study proposed a strategy for identifying the genes essential for basidiospore formation after meiotic division to determine new targets for molecular breeding. RNA-seq analysis was performed to identify <em>P. ostreatus</em> genes that are specifically expressed in the gill tissue of fruiting bodies, where basidiospore formation occurs. Transcriptome data during fruiting development of <em>Coprinopsis cinerea</em>, in which the meiotic steps progress synchronously, were then used to identify genes that are active in the postmeiotic stages. Based on these comparative analyses, five <em>P. ostreatus</em> genes were identified. Plasmids containing expression cassettes for hygromycin B-resistance screening, Cas9, and single-guide RNA targeting each gene were introduced into the protoplasts of dikaryotic strain, PC9×#64, to generate dikaryotic gene disruptants. Among the obtained transformants, three dikaryotic <em>pcl1</em> disruptants and two <em>cro6c</em> disruptants did not produce basidiospores. Microscopic analyses indicated that spore formation was arrested at particular stages in these gene disruptants. These results indicate that these two genes are essential for mature spore formation in this fungus.</p></div>","PeriodicalId":55135,"journal":{"name":"Fungal Genetics and Biology","volume":"172 ","pages":"Article 103890"},"PeriodicalIF":2.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of two genes essential for basidiospore formation during the postmeiotic stages in Pleurotus ostreatus\",\"authors\":\"Takeshi Kobukata ,&nbsp;Takehito Nakazawa ,&nbsp;Fuga Yamasaki ,&nbsp;Junko Sugano ,&nbsp;Minji Oh ,&nbsp;Moriyuki Kawauchi ,&nbsp;Masahiro Sakamoto ,&nbsp;Yoichi Honda\",\"doi\":\"10.1016/j.fgb.2024.103890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A sporeless strain is an important breeding target in the mushroom industry. However, basidiospore production in the oyster mushroom <em>Pleurotus ostreatus</em> has been shown to be impaired by single-gene mutations in only two meiosis-related genes, <em>mer3</em> and <em>msh4</em>. This study proposed a strategy for identifying the genes essential for basidiospore formation after meiotic division to determine new targets for molecular breeding. RNA-seq analysis was performed to identify <em>P. ostreatus</em> genes that are specifically expressed in the gill tissue of fruiting bodies, where basidiospore formation occurs. Transcriptome data during fruiting development of <em>Coprinopsis cinerea</em>, in which the meiotic steps progress synchronously, were then used to identify genes that are active in the postmeiotic stages. Based on these comparative analyses, five <em>P. ostreatus</em> genes were identified. Plasmids containing expression cassettes for hygromycin B-resistance screening, Cas9, and single-guide RNA targeting each gene were introduced into the protoplasts of dikaryotic strain, PC9×#64, to generate dikaryotic gene disruptants. Among the obtained transformants, three dikaryotic <em>pcl1</em> disruptants and two <em>cro6c</em> disruptants did not produce basidiospores. Microscopic analyses indicated that spore formation was arrested at particular stages in these gene disruptants. These results indicate that these two genes are essential for mature spore formation in this fungus.</p></div>\",\"PeriodicalId\":55135,\"journal\":{\"name\":\"Fungal Genetics and Biology\",\"volume\":\"172 \",\"pages\":\"Article 103890\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal Genetics and Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1087184524000276\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Genetics and Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1087184524000276","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

无孢子菌株是蘑菇业的一个重要育种目标。然而,牡蛎菇(Pleurotus ostreatus)中基原孢子的产生只受到两个减数分裂相关基因 mer3 和 msh4 的单基因突变的影响。本研究提出了一种策略,以确定减数分裂后形成基孢子所必需的基因,从而确定分子育种的新目标。研究人员进行了 RNA-seq 分析,以确定在基质孢子形成的子实体鳃组织中特异表达的 P. ostreatus 基因。然后利用减数分裂同步进行的 Coprinopsis cinerea 果实发育过程中的转录组数据,确定在减数分裂后期活跃的基因。根据这些比较分析,确定了五个 P. ostreatus 基因。将含有表达盒的质粒导入二核菌株 PC9×#64 的原生质体中,以产生二核基因干扰物。在获得的转化子中,三个二核基因 pcl1 干扰子和两个 cro6c 干扰子没有产生基生孢子。显微分析表明,在这些基因干扰物中,孢子的形成在特定阶段被阻断。这些结果表明,这两个基因对该真菌成熟孢子的形成至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of two genes essential for basidiospore formation during the postmeiotic stages in Pleurotus ostreatus

A sporeless strain is an important breeding target in the mushroom industry. However, basidiospore production in the oyster mushroom Pleurotus ostreatus has been shown to be impaired by single-gene mutations in only two meiosis-related genes, mer3 and msh4. This study proposed a strategy for identifying the genes essential for basidiospore formation after meiotic division to determine new targets for molecular breeding. RNA-seq analysis was performed to identify P. ostreatus genes that are specifically expressed in the gill tissue of fruiting bodies, where basidiospore formation occurs. Transcriptome data during fruiting development of Coprinopsis cinerea, in which the meiotic steps progress synchronously, were then used to identify genes that are active in the postmeiotic stages. Based on these comparative analyses, five P. ostreatus genes were identified. Plasmids containing expression cassettes for hygromycin B-resistance screening, Cas9, and single-guide RNA targeting each gene were introduced into the protoplasts of dikaryotic strain, PC9×#64, to generate dikaryotic gene disruptants. Among the obtained transformants, three dikaryotic pcl1 disruptants and two cro6c disruptants did not produce basidiospores. Microscopic analyses indicated that spore formation was arrested at particular stages in these gene disruptants. These results indicate that these two genes are essential for mature spore formation in this fungus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fungal Genetics and Biology
Fungal Genetics and Biology 生物-遗传学
CiteScore
6.20
自引率
3.30%
发文量
66
审稿时长
85 days
期刊介绍: Fungal Genetics and Biology, formerly known as Experimental Mycology, publishes experimental investigations of fungi and their traditional allies that relate structure and function to growth, reproduction, morphogenesis, and differentiation. This journal especially welcomes studies of gene organization and expression and of developmental processes at the cellular, subcellular, and molecular levels. The journal also includes suitable experimental inquiries into fungal cytology, biochemistry, physiology, genetics, and phylogeny. Fungal Genetics and Biology publishes basic research conducted by mycologists, cell biologists, biochemists, geneticists, and molecular biologists. Research Areas include: • Biochemistry • Cytology • Developmental biology • Evolutionary biology • Genetics • Molecular biology • Phylogeny • Physiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信