Philip Cornish, Nabil Humphrey, Anne Cornish, R. Branden Emmerson
{"title":"神经调控止痛的硅学分析:确定经典电动力学的作用","authors":"Philip Cornish, Nabil Humphrey, Anne Cornish, R. Branden Emmerson","doi":"10.1002/cnm.3813","DOIUrl":null,"url":null,"abstract":"<p>There has been ongoing debate about the efficacy and mechanism of action of neuromodulation devices in pain relief applications. It has recently been suggested that both issues may be resolved if electromagnetic theory is incorporated into the understanding and application of this technology, and we therefore undertook an in silico analysis to further explore this idea. We created a CAD replication of a standard neuromodulation electrode array with a generic linear 3/6 mm 8-contact lead, developed a parameterized algorithmic model for the pulse delivered by the device and assigned material properties to biologic media to accurately reflect their electromagnetic properties. We then created a physical simulation of the device's output both in air and in the biophysical environment. The simulations confirmed the presence of an electromagnetic field (EM field). Variations in programming of the device affected the strength of the EM field by orders of magnitude. The biologic media all absorbed the EM field, an effect which was particularly pronounced in cerebrospinal fluid and muscle. We discuss the implications of all these findings in relation to the literature. We suggest that knowledge of electromagnetic theory and its application within the biophysical space is required for the optimal use of neuromodulation devices in pain relief applications.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"40 5","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.3813","citationCount":"0","resultStr":"{\"title\":\"An in silico analysis of neuromodulation for pain relief: Determining the role of classical electrodynamics\",\"authors\":\"Philip Cornish, Nabil Humphrey, Anne Cornish, R. Branden Emmerson\",\"doi\":\"10.1002/cnm.3813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There has been ongoing debate about the efficacy and mechanism of action of neuromodulation devices in pain relief applications. It has recently been suggested that both issues may be resolved if electromagnetic theory is incorporated into the understanding and application of this technology, and we therefore undertook an in silico analysis to further explore this idea. We created a CAD replication of a standard neuromodulation electrode array with a generic linear 3/6 mm 8-contact lead, developed a parameterized algorithmic model for the pulse delivered by the device and assigned material properties to biologic media to accurately reflect their electromagnetic properties. We then created a physical simulation of the device's output both in air and in the biophysical environment. The simulations confirmed the presence of an electromagnetic field (EM field). Variations in programming of the device affected the strength of the EM field by orders of magnitude. The biologic media all absorbed the EM field, an effect which was particularly pronounced in cerebrospinal fluid and muscle. We discuss the implications of all these findings in relation to the literature. We suggest that knowledge of electromagnetic theory and its application within the biophysical space is required for the optimal use of neuromodulation devices in pain relief applications.</p>\",\"PeriodicalId\":50349,\"journal\":{\"name\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"volume\":\"40 5\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.3813\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3813\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3813","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
An in silico analysis of neuromodulation for pain relief: Determining the role of classical electrodynamics
There has been ongoing debate about the efficacy and mechanism of action of neuromodulation devices in pain relief applications. It has recently been suggested that both issues may be resolved if electromagnetic theory is incorporated into the understanding and application of this technology, and we therefore undertook an in silico analysis to further explore this idea. We created a CAD replication of a standard neuromodulation electrode array with a generic linear 3/6 mm 8-contact lead, developed a parameterized algorithmic model for the pulse delivered by the device and assigned material properties to biologic media to accurately reflect their electromagnetic properties. We then created a physical simulation of the device's output both in air and in the biophysical environment. The simulations confirmed the presence of an electromagnetic field (EM field). Variations in programming of the device affected the strength of the EM field by orders of magnitude. The biologic media all absorbed the EM field, an effect which was particularly pronounced in cerebrospinal fluid and muscle. We discuss the implications of all these findings in relation to the literature. We suggest that knowledge of electromagnetic theory and its application within the biophysical space is required for the optimal use of neuromodulation devices in pain relief applications.
期刊介绍:
All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.