神经调控止痛的硅学分析:确定经典电动力学的作用

IF 2.2 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Philip Cornish, Nabil Humphrey, Anne Cornish, R. Branden Emmerson
{"title":"神经调控止痛的硅学分析:确定经典电动力学的作用","authors":"Philip Cornish,&nbsp;Nabil Humphrey,&nbsp;Anne Cornish,&nbsp;R. Branden Emmerson","doi":"10.1002/cnm.3813","DOIUrl":null,"url":null,"abstract":"<p>There has been ongoing debate about the efficacy and mechanism of action of neuromodulation devices in pain relief applications. It has recently been suggested that both issues may be resolved if electromagnetic theory is incorporated into the understanding and application of this technology, and we therefore undertook an in silico analysis to further explore this idea. We created a CAD replication of a standard neuromodulation electrode array with a generic linear 3/6 mm 8-contact lead, developed a parameterized algorithmic model for the pulse delivered by the device and assigned material properties to biologic media to accurately reflect their electromagnetic properties. We then created a physical simulation of the device's output both in air and in the biophysical environment. The simulations confirmed the presence of an electromagnetic field (EM field). Variations in programming of the device affected the strength of the EM field by orders of magnitude. The biologic media all absorbed the EM field, an effect which was particularly pronounced in cerebrospinal fluid and muscle. We discuss the implications of all these findings in relation to the literature. We suggest that knowledge of electromagnetic theory and its application within the biophysical space is required for the optimal use of neuromodulation devices in pain relief applications.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"40 5","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.3813","citationCount":"0","resultStr":"{\"title\":\"An in silico analysis of neuromodulation for pain relief: Determining the role of classical electrodynamics\",\"authors\":\"Philip Cornish,&nbsp;Nabil Humphrey,&nbsp;Anne Cornish,&nbsp;R. Branden Emmerson\",\"doi\":\"10.1002/cnm.3813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There has been ongoing debate about the efficacy and mechanism of action of neuromodulation devices in pain relief applications. It has recently been suggested that both issues may be resolved if electromagnetic theory is incorporated into the understanding and application of this technology, and we therefore undertook an in silico analysis to further explore this idea. We created a CAD replication of a standard neuromodulation electrode array with a generic linear 3/6 mm 8-contact lead, developed a parameterized algorithmic model for the pulse delivered by the device and assigned material properties to biologic media to accurately reflect their electromagnetic properties. We then created a physical simulation of the device's output both in air and in the biophysical environment. The simulations confirmed the presence of an electromagnetic field (EM field). Variations in programming of the device affected the strength of the EM field by orders of magnitude. The biologic media all absorbed the EM field, an effect which was particularly pronounced in cerebrospinal fluid and muscle. We discuss the implications of all these findings in relation to the literature. We suggest that knowledge of electromagnetic theory and its application within the biophysical space is required for the optimal use of neuromodulation devices in pain relief applications.</p>\",\"PeriodicalId\":50349,\"journal\":{\"name\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"volume\":\"40 5\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.3813\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3813\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3813","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

关于神经调控设备在镇痛应用中的功效和作用机制一直存在争议。最近有人提出,如果将电磁理论纳入对这一技术的理解和应用,那么这两个问题都可能得到解决。我们创建了一个标准神经调控电极阵列的 CAD 复制品,该阵列带有一个通用的线性 3/6 毫米 8 触点导线,我们还为该设备提供的脉冲开发了一个参数化算法模型,并为生物介质分配了材料属性,以准确反映其电磁特性。然后,我们对设备在空气和生物物理环境中的输出进行了物理模拟。模拟结果证实了电磁场的存在。设备编程的变化对电磁场强度的影响是数量级的。所有生物介质都吸收了电磁场,这种效应在脑脊液和肌肉中尤为明显。我们结合文献讨论了所有这些发现的意义。我们认为,要在镇痛应用中优化神经调控设备的使用,就必须了解电磁理论及其在生物物理空间中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An in silico analysis of neuromodulation for pain relief: Determining the role of classical electrodynamics

An in silico analysis of neuromodulation for pain relief: Determining the role of classical electrodynamics

An in silico analysis of neuromodulation for pain relief: Determining the role of classical electrodynamics

There has been ongoing debate about the efficacy and mechanism of action of neuromodulation devices in pain relief applications. It has recently been suggested that both issues may be resolved if electromagnetic theory is incorporated into the understanding and application of this technology, and we therefore undertook an in silico analysis to further explore this idea. We created a CAD replication of a standard neuromodulation electrode array with a generic linear 3/6 mm 8-contact lead, developed a parameterized algorithmic model for the pulse delivered by the device and assigned material properties to biologic media to accurately reflect their electromagnetic properties. We then created a physical simulation of the device's output both in air and in the biophysical environment. The simulations confirmed the presence of an electromagnetic field (EM field). Variations in programming of the device affected the strength of the EM field by orders of magnitude. The biologic media all absorbed the EM field, an effect which was particularly pronounced in cerebrospinal fluid and muscle. We discuss the implications of all these findings in relation to the literature. We suggest that knowledge of electromagnetic theory and its application within the biophysical space is required for the optimal use of neuromodulation devices in pain relief applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Numerical Methods in Biomedical Engineering
International Journal for Numerical Methods in Biomedical Engineering ENGINEERING, BIOMEDICAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.50
自引率
9.50%
发文量
103
审稿时长
3 months
期刊介绍: All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信