Julia Kar, Michael V Cohen, Samuel A McQuiston, Teja Poorsala, Christopher M Malozzi
{"title":"利用全卷积网络从磁共振成像中自动分割左心室,研究乳腺癌患者的 CTRCD。","authors":"Julia Kar, Michael V Cohen, Samuel A McQuiston, Teja Poorsala, Christopher M Malozzi","doi":"10.1117/1.JMI.11.2.024003","DOIUrl":null,"url":null,"abstract":"<p><p><b>Purpose:</b> The goal of this study was to develop a fully convolutional network (FCN) tool to automatedly segment the left-ventricular (LV) myocardium in displacement encoding with stimulated echoes MRI. The segmentation results are used for LV chamber quantification and strain analyses in breast cancer patients susceptible to cancer therapy-related cardiac dysfunction (CTRCD). <b>Approach:</b> A DeepLabV3+ FCN with a ResNet-101 backbone was custom-designed to conduct chamber quantification on 45 female breast cancer datasets (23 training, 11 validation, and 11 test sets). LV structural parameters and LV ejection fraction (LVEF) were measured, and myocardial strains estimated with the radial point interpolation method. Myocardial classification validation was against quantization-based ground-truth with computations of accuracy, Dice score, average perpendicular distance (APD), Hausdorff-distance, and others. Additional validations were conducted with equivalence tests and Cronbach's alpha (<math><mrow><mi>C</mi><mtext>-</mtext><mi>α</mi></mrow></math>) intraclass correlation coefficients between the FCN and a vendor tool on chamber quantification and myocardial strain computations. <b>Results:</b> Myocardial classification results against ground-truth were <math><mrow><mtext>Dice</mtext><mo>=</mo><mn>0.89</mn></mrow></math>, <math><mrow><mi>APD</mi><mo>=</mo><mn>2.4</mn><mtext> </mtext><mi>mm</mi></mrow></math>, and <math><mrow><mtext>accuracy</mtext><mo>=</mo><mn>97</mn><mo>%</mo></mrow></math> for the validation set and <math><mrow><mtext>Dice</mtext><mo>=</mo><mn>0.90</mn></mrow></math>, <math><mrow><mi>APD</mi><mo>=</mo><mn>2.5</mn><mtext> </mtext><mi>mm</mi></mrow></math>, and <math><mrow><mtext>accuracy</mtext><mo>=</mo><mn>97</mn><mo>%</mo></mrow></math> for the test set. The confidence intervals (CI) and two one-sided t-test results of equivalence tests between the FCN and vendor-tool were <math><mrow><mi>CI</mi><mo>=</mo><mo>-</mo><mn>1.36</mn><mo>%</mo></mrow></math> to 2.42%, p-value < 0.001 for LVEF (<math><mrow><mn>58</mn><mo>±</mo><mn>5</mn><mo>%</mo></mrow></math> versus <math><mrow><mn>57</mn><mo>±</mo><mn>6</mn><mo>%</mo></mrow></math>), and <math><mrow><mi>CI</mi><mo>=</mo><mo>-</mo><mn>0.71</mn><mo>%</mo></mrow></math> to 0.63%, p-value < 0.001 for longitudinal strain (<math><mrow><mo>-</mo><mn>15</mn><mo>±</mo><mn>2</mn><mo>%</mo></mrow></math> versus <math><mrow><mo>-</mo><mn>15</mn><mo>±</mo><mn>3</mn><mo>%</mo></mrow></math>). <b>Conclusions:</b> The validation results were found equivalent to the vendor tool-based parameter estimates, which show that accurate LV chamber quantification followed by strain analysis for CTRCD investigation can be achieved with our proposed FCN methodology.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 2","pages":"024003"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10950093/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automated segmentation of the left-ventricle from MRI with a fully convolutional network to investigate CTRCD in breast cancer patients.\",\"authors\":\"Julia Kar, Michael V Cohen, Samuel A McQuiston, Teja Poorsala, Christopher M Malozzi\",\"doi\":\"10.1117/1.JMI.11.2.024003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Purpose:</b> The goal of this study was to develop a fully convolutional network (FCN) tool to automatedly segment the left-ventricular (LV) myocardium in displacement encoding with stimulated echoes MRI. The segmentation results are used for LV chamber quantification and strain analyses in breast cancer patients susceptible to cancer therapy-related cardiac dysfunction (CTRCD). <b>Approach:</b> A DeepLabV3+ FCN with a ResNet-101 backbone was custom-designed to conduct chamber quantification on 45 female breast cancer datasets (23 training, 11 validation, and 11 test sets). LV structural parameters and LV ejection fraction (LVEF) were measured, and myocardial strains estimated with the radial point interpolation method. Myocardial classification validation was against quantization-based ground-truth with computations of accuracy, Dice score, average perpendicular distance (APD), Hausdorff-distance, and others. Additional validations were conducted with equivalence tests and Cronbach's alpha (<math><mrow><mi>C</mi><mtext>-</mtext><mi>α</mi></mrow></math>) intraclass correlation coefficients between the FCN and a vendor tool on chamber quantification and myocardial strain computations. <b>Results:</b> Myocardial classification results against ground-truth were <math><mrow><mtext>Dice</mtext><mo>=</mo><mn>0.89</mn></mrow></math>, <math><mrow><mi>APD</mi><mo>=</mo><mn>2.4</mn><mtext> </mtext><mi>mm</mi></mrow></math>, and <math><mrow><mtext>accuracy</mtext><mo>=</mo><mn>97</mn><mo>%</mo></mrow></math> for the validation set and <math><mrow><mtext>Dice</mtext><mo>=</mo><mn>0.90</mn></mrow></math>, <math><mrow><mi>APD</mi><mo>=</mo><mn>2.5</mn><mtext> </mtext><mi>mm</mi></mrow></math>, and <math><mrow><mtext>accuracy</mtext><mo>=</mo><mn>97</mn><mo>%</mo></mrow></math> for the test set. The confidence intervals (CI) and two one-sided t-test results of equivalence tests between the FCN and vendor-tool were <math><mrow><mi>CI</mi><mo>=</mo><mo>-</mo><mn>1.36</mn><mo>%</mo></mrow></math> to 2.42%, p-value < 0.001 for LVEF (<math><mrow><mn>58</mn><mo>±</mo><mn>5</mn><mo>%</mo></mrow></math> versus <math><mrow><mn>57</mn><mo>±</mo><mn>6</mn><mo>%</mo></mrow></math>), and <math><mrow><mi>CI</mi><mo>=</mo><mo>-</mo><mn>0.71</mn><mo>%</mo></mrow></math> to 0.63%, p-value < 0.001 for longitudinal strain (<math><mrow><mo>-</mo><mn>15</mn><mo>±</mo><mn>2</mn><mo>%</mo></mrow></math> versus <math><mrow><mo>-</mo><mn>15</mn><mo>±</mo><mn>3</mn><mo>%</mo></mrow></math>). <b>Conclusions:</b> The validation results were found equivalent to the vendor tool-based parameter estimates, which show that accurate LV chamber quantification followed by strain analysis for CTRCD investigation can be achieved with our proposed FCN methodology.</p>\",\"PeriodicalId\":47707,\"journal\":{\"name\":\"Journal of Medical Imaging\",\"volume\":\"11 2\",\"pages\":\"024003\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10950093/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JMI.11.2.024003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.2.024003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Automated segmentation of the left-ventricle from MRI with a fully convolutional network to investigate CTRCD in breast cancer patients.
Purpose: The goal of this study was to develop a fully convolutional network (FCN) tool to automatedly segment the left-ventricular (LV) myocardium in displacement encoding with stimulated echoes MRI. The segmentation results are used for LV chamber quantification and strain analyses in breast cancer patients susceptible to cancer therapy-related cardiac dysfunction (CTRCD). Approach: A DeepLabV3+ FCN with a ResNet-101 backbone was custom-designed to conduct chamber quantification on 45 female breast cancer datasets (23 training, 11 validation, and 11 test sets). LV structural parameters and LV ejection fraction (LVEF) were measured, and myocardial strains estimated with the radial point interpolation method. Myocardial classification validation was against quantization-based ground-truth with computations of accuracy, Dice score, average perpendicular distance (APD), Hausdorff-distance, and others. Additional validations were conducted with equivalence tests and Cronbach's alpha () intraclass correlation coefficients between the FCN and a vendor tool on chamber quantification and myocardial strain computations. Results: Myocardial classification results against ground-truth were , , and for the validation set and , , and for the test set. The confidence intervals (CI) and two one-sided t-test results of equivalence tests between the FCN and vendor-tool were to 2.42%, p-value < 0.001 for LVEF ( versus ), and to 0.63%, p-value < 0.001 for longitudinal strain ( versus ). Conclusions: The validation results were found equivalent to the vendor tool-based parameter estimates, which show that accurate LV chamber quantification followed by strain analysis for CTRCD investigation can be achieved with our proposed FCN methodology.
期刊介绍:
JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.